What is Face Anti Spoofing? Face anti-spoofing is the process of detecting and preventing spoofing attacks on face recognition systems.
Papers and Code
May 30, 2025
Abstract:Face recognition systems are designed to be robust against changes in head pose, illumination, and blurring during image capture. If a malicious person presents a face photo of the registered user, they may bypass the authentication process illegally. Such spoofing attacks need to be detected before face recognition. In this paper, we propose a spoofing attack detection method based on Vision Transformer (ViT) to detect minute differences between live and spoofed face images. The proposed method utilizes the intermediate features of ViT, which have a good balance between local and global features that are important for spoofing attack detection, for calculating loss in training and score in inference. The proposed method also introduces two data augmentation methods: face anti-spoofing data augmentation and patch-wise data augmentation, to improve the accuracy of spoofing attack detection. We demonstrate the effectiveness of the proposed method through experiments using the OULU-NPU and SiW datasets.
* 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW)
Via

Jun 07, 2025
Abstract:Biometric authentication systems are increasingly being deployed in critical applications, but they remain susceptible to spoofing. Since most of the research efforts focus on modality-specific anti-spoofing techniques, building a unified, resource-efficient solution across multiple biometric modalities remains a challenge. To address this, we propose LitMAS, a $\textbf{Li}$gh$\textbf{t}$ weight and generalizable $\textbf{M}$ulti-modal $\textbf{A}$nti-$\textbf{S}$poofing framework designed to detect spoofing attacks in speech, face, iris, and fingerprint-based biometric systems. At the core of LitMAS is a Modality-Aligned Concentration Loss, which enhances inter-class separability while preserving cross-modal consistency and enabling robust spoof detection across diverse biometric traits. With just 6M parameters, LitMAS surpasses state-of-the-art methods by $1.36\%$ in average EER across seven datasets, demonstrating high efficiency, strong generalizability, and suitability for edge deployment. Code and trained models are available at https://github.com/IAB-IITJ/LitMAS.
* Accepted in Interspeech 2025
Via

May 14, 2025
Abstract:Face Anti-Spoofing (FAS) is essential for the security of facial recognition systems in diverse scenarios such as payment processing and surveillance. Current multimodal FAS methods often struggle with effective generalization, mainly due to modality-specific biases and domain shifts. To address these challenges, we introduce the \textbf{M}ulti\textbf{m}odal \textbf{D}enoising and \textbf{A}lignment (\textbf{MMDA}) framework. By leveraging the zero-shot generalization capability of CLIP, the MMDA framework effectively suppresses noise in multimodal data through denoising and alignment mechanisms, thereby significantly enhancing the generalization performance of cross-modal alignment. The \textbf{M}odality-\textbf{D}omain Joint \textbf{D}ifferential \textbf{A}ttention (\textbf{MD2A}) module in MMDA concurrently mitigates the impacts of domain and modality noise by refining the attention mechanism based on extracted common noise features. Furthermore, the \textbf{R}epresentation \textbf{S}pace \textbf{S}oft (\textbf{RS2}) Alignment strategy utilizes the pre-trained CLIP model to align multi-domain multimodal data into a generalized representation space in a flexible manner, preserving intricate representations and enhancing the model's adaptability to various unseen conditions. We also design a \textbf{U}-shaped \textbf{D}ual \textbf{S}pace \textbf{A}daptation (\textbf{U-DSA}) module to enhance the adaptability of representations while maintaining generalization performance. These improvements not only enhance the framework's generalization capabilities but also boost its ability to represent complex representations. Our experimental results on four benchmark datasets under different evaluation protocols demonstrate that the MMDA framework outperforms existing state-of-the-art methods in terms of cross-domain generalization and multimodal detection accuracy. The code will be released soon.
Via

May 14, 2025
Abstract:Face anti-spoofing (FAS) is crucial for protecting facial recognition systems from presentation attacks. Previous methods approached this task as a classification problem, lacking interpretability and reasoning behind the predicted results. Recently, multimodal large language models (MLLMs) have shown strong capabilities in perception, reasoning, and decision-making in visual tasks. However, there is currently no universal and comprehensive MLLM and dataset specifically designed for FAS task. To address this gap, we propose FaceShield, a MLLM for FAS, along with the corresponding pre-training and supervised fine-tuning (SFT) datasets, FaceShield-pre10K and FaceShield-sft45K. FaceShield is capable of determining the authenticity of faces, identifying types of spoofing attacks, providing reasoning for its judgments, and detecting attack areas. Specifically, we employ spoof-aware vision perception (SAVP) that incorporates both the original image and auxiliary information based on prior knowledge. We then use an prompt-guided vision token masking (PVTM) strategy to random mask vision tokens, thereby improving the model's generalization ability. We conducted extensive experiments on three benchmark datasets, demonstrating that FaceShield significantly outperforms previous deep learning models and general MLLMs on four FAS tasks, i.e., coarse-grained classification, fine-grained classification, reasoning, and attack localization. Our instruction datasets, protocols, and codes will be released soon.
Via

May 06, 2025
Abstract:Face anti-spoofing is a critical technology for ensuring the security of face recognition systems. However, its ability to generalize across diverse scenarios remains a significant challenge. In this paper, we attribute the limited generalization ability to two key factors: covariate shift, which arises from external data collection variations, and semantic shift, which results from substantial differences in emerging attack types. To address both challenges, we propose a novel approach for learning unknown spoof prompts, relying solely on real face images from a single source domain. Our method generates textual prompts for real faces and potential unknown spoof attacks by leveraging the general knowledge embedded in vision-language models, thereby enhancing the model's ability to generalize to unseen target domains. Specifically, we introduce a diverse spoof prompt optimization framework to learn effective prompts. This framework constrains unknown spoof prompts within a relaxed prior knowledge space while maximizing their distance from real face images. Moreover, it enforces semantic independence among different spoof prompts to capture a broad range of spoof patterns. Experimental results on nine datasets demonstrate that the learned prompts effectively transfer the knowledge of vision-language models, enabling state-of-the-art generalization ability against diverse unknown attack types across unseen target domains without using any spoof face images.
Via

Apr 06, 2025
Abstract:The challenge of Domain Generalization (DG) in Face Anti-Spoofing (FAS) is the significant interference of domain-specific signals on subtle spoofing clues. Recently, some CLIP-based algorithms have been developed to alleviate this interference by adjusting the weights of visual classifiers. However, our analysis of this class-wise prompt engineering suffers from two shortcomings for DG FAS: (1) The categories of facial categories, such as real or spoof, have no semantics for the CLIP model, making it difficult to learn accurate category descriptions. (2) A single form of prompt cannot portray the various types of spoofing. In this work, instead of class-wise prompts, we propose a novel Content-aware Composite Prompt Engineering (CCPE) that generates instance-wise composite prompts, including both fixed template and learnable prompts. Specifically, our CCPE constructs content-aware prompts from two branches: (1) Inherent content prompt explicitly benefits from abundant transferred knowledge from the instruction-based Large Language Model (LLM). (2) Learnable content prompts implicitly extract the most informative visual content via Q-Former. Moreover, we design a Cross-Modal Guidance Module (CGM) that dynamically adjusts unimodal features for fusion to achieve better generalized FAS. Finally, our CCPE has been validated for its effectiveness in multiple cross-domain experiments and achieves state-of-the-art (SOTA) results.
Via

Mar 29, 2025
Abstract:Face anti-spoofing (FAS) heavily relies on identifying live/spoof discriminative features to counter face presentation attacks. Recently, we proposed LDCformer to successfully incorporate the Learnable Descriptive Convolution (LDC) into ViT, to model long-range dependency of locally descriptive features for FAS. In this paper, we propose three novel training strategies to effectively enhance the training of LDCformer to largely boost its feature characterization capability. The first strategy, dual-attention supervision, is developed to learn fine-grained liveness features guided by regional live/spoof attentions. The second strategy, self-challenging supervision, is designed to enhance the discriminability of the features by generating challenging training data. In addition, we propose a third training strategy, transitional triplet mining strategy, through narrowing the cross-domain gap while maintaining the transitional relationship between live and spoof features, to enlarge the domain-generalization capability of LDCformer. Extensive experiments show that LDCformer under joint supervision of the three novel training strategies outperforms previous methods.
Via

Mar 29, 2025
Abstract:Face anti-spoofing (FAS) techniques aim to enhance the security of facial identity authentication by distinguishing authentic live faces from deceptive attempts. While two-class FAS methods risk overfitting to training attacks to achieve better performance, one-class FAS approaches handle unseen attacks well but are less robust to domain information entangled within the liveness features. To address this, we propose an Unsupervised Feature Disentanglement and Augmentation Network (\textbf{UFDANet}), a one-class FAS technique that enhances generalizability by augmenting face images via disentangled features. The \textbf{UFDANet} employs a novel unsupervised feature disentangling method to separate the liveness and domain features, facilitating discriminative feature learning. It integrates an out-of-distribution liveness feature augmentation scheme to synthesize new liveness features of unseen spoof classes, which deviate from the live class, thus enhancing the representability and discriminability of liveness features. Additionally, \textbf{UFDANet} incorporates a domain feature augmentation routine to synthesize unseen domain features, thereby achieving better generalizability. Extensive experiments demonstrate that the proposed \textbf{UFDANet} outperforms previous one-class FAS methods and achieves comparable performance to state-of-the-art two-class FAS methods.
Via

Mar 29, 2025
Abstract:Developing a face anti-spoofing model that meets the security requirements of clients worldwide is challenging due to the domain gap between training datasets and diverse end-user test data. Moreover, for security and privacy reasons, it is undesirable for clients to share a large amount of their face data with service providers. In this work, we introduce a novel method in which the face anti-spoofing model can be adapted by the client itself to a target domain at test time using only a small sample of data while keeping model parameters and training data inaccessible to the client. Specifically, we develop a prototype-based base model and an optimal transport-guided adaptor that enables adaptation in either a lightweight training or training-free fashion, without updating base model's parameters. Furthermore, we propose geodesic mixup, an optimal transport-based synthesis method that generates augmented training data along the geodesic path between source prototypes and target data distribution. This allows training a lightweight classifier to effectively adapt to target-specific characteristics while retaining essential knowledge learned from the source domain. In cross-domain and cross-attack settings, compared with recent methods, our method achieves average relative improvements of 19.17% in HTER and 8.58% in AUC, respectively.
* 15 pages, 7 figures
Via

Apr 07, 2025
Abstract:Face recognition systems are vulnerable to physical attacks (e.g., printed photos) and digital threats (e.g., DeepFake), which are currently being studied as independent visual tasks, such as Face Anti-Spoofing and Forgery Detection. The inherent differences among various attack types present significant challenges in identifying a common feature space, making it difficult to develop a unified framework for detecting data from both attack modalities simultaneously. Inspired by the efficacy of Mixture-of-Experts (MoE) in learning across diverse domains, we explore utilizing multiple experts to learn the distinct features of various attack types. However, the feature distributions of physical and digital attacks overlap and differ. This suggests that relying solely on distinct experts to learn the unique features of each attack type may overlook shared knowledge between them. To address these issues, we propose SUEDE, the Shared Unified Experts for Physical-Digital Face Attack Detection Enhancement. SUEDE combines a shared expert (always activated) to capture common features for both attack types and multiple routed experts (selectively activated) for specific attack types. Further, we integrate CLIP as the base network to ensure the shared expert benefits from prior visual knowledge and align visual-text representations in a unified space. Extensive results demonstrate SUEDE achieves superior performance compared to state-of-the-art unified detection methods.
* Accepted in ICME 2025
Via
