Developing expressive and responsive conversational digital humans is a cornerstone of next-generation human-computer interaction. While large language models (LLMs) have significantly enhanced dialogue capabilities, most current systems still rely on cascaded architectures that connect independent modules. These pipelines are often plagued by accumulated errors, high latency, and poor real-time performance. Lacking access to the underlying conversational context, these pipelines inherently prioritize rigid lip-sync over emotional depth. To address these challenges, we propose A$^2$-LLM, an end-to-end conversational audio avatar large language model that jointly reasons about language, audio prosody, and 3D facial motion within a unified framework. To facilitate training, we introduce FLAME-QA, a high-quality multimodal dataset designed to align semantic intent with expressive facial dynamics within a QA format. By leveraging deep semantic understanding, A$^2$-LLM generates emotionally rich facial movements beyond simple lip-synchronization. Experimental results demonstrate that our system achieves superior emotional expressiveness while maintaining real-time efficiency (500 ms latency, 0.7 RTF).
Personalization and contextual coherence are two essential components in building effective persona-grounded dialogue systems. These aspects play a crucial role in enhancing user engagement and ensuring responses are more relevant and consistent with user identity. However, recent studies indicate that open-source large language models (LLMs) continue to struggle to generate responses that are both contextually grounded and aligned with persona cues, despite exhibiting strong general conversational abilities like fluency and naturalness. We present PersoDPO, a scalable preference optimisation framework that uses supervision signals from automatic evaluations of responses generated by both closed-source and open-source LLMs to fine-tune dialogue models. The framework integrates evaluation metrics targeting coherence and personalization, along with a length-format compliance feature to promote instruction adherence. These signals are combined to automatically construct high-quality preference pairs without manual annotation, enabling a scalable and reproducible training pipeline. Experiments on the FoCus dataset show that an open-source language model fine-tuned with the PersoDPO framework consistently outperforms strong open-source baselines and a standard Direct Preference Optimization (DPO) variant across multiple evaluation dimensions.
Large language models excel as few-shot learners when provided with appropriate demonstrations, yet this strength becomes problematic in multiturn agent scenarios, where LLMs erroneously mimic their own previous responses as few-shot examples. Through attention analysis, we identify conversational inertia, a phenomenon where models exhibit strong diagonal attention to previous responses, which is associated with imitation bias that constrains exploration. This reveals a tension when transforming few-shot LLMs into agents: longer context enriches environmental feedback for exploitation, yet also amplifies conversational inertia that undermines exploration. Our key insight is that for identical states, actions generated with longer contexts exhibit stronger inertia than those with shorter contexts, enabling construction of preference pairs without environment rewards. Based on this, we propose Context Preference Learning to calibrate model preferences to favor low-inertia responses over highinertia ones. We further provide context management strategies at inference time to balance exploration and exploitation. Experimental results across eight agentic environments and one deep research scenario validate that our framework reduces conversational inertia and achieves performance improvements.
Software Engineering (SE) agents have shown promising abilities in supporting various SE tasks. Current SE agents remain fundamentally reactive, making decisions mainly based on conversation history and the most recent response. However, this reactive design provides no explicit structure or persistent state within the agent's memory, making long-horizon reasoning challenging. As a result, SE agents struggle to maintain a coherent understanding across reasoning steps, adapt their hypotheses as new evidence emerges, or incorporate execution feedback into the mental reasoning model of the system state. In this position paper, we argue that, to further advance SE agents, we need to move beyond reactive behavior toward a structured, state-aware, and execution-grounded reasoning. We outline how explicit structure, persistent and evolving state, and the integration of execution-grounded feedback can help SE agents perform more coherent and reliable reasoning in long-horizon tasks. We also provide an initial roadmap for developing next-generation SE agents that can more effectively perform real-world tasks.
Millions now use leading generative AI chatbots for psychological support. Despite the promise related to availability and scale, the single most pressing question in AI for mental health is whether these tools are safe. The Validation of Ethical and Responsible AI in Mental Health (VERA-MH) evaluation was recently proposed to meet the urgent need for an evidence-based automated safety benchmark. This study aimed to examine the clinical validity and reliability of the VERA-MH evaluation for AI safety in suicide risk detection and response. We first simulated a large set of conversations between large language model (LLM)-based users (user-agents) and general-purpose AI chatbots. Licensed mental health clinicians used a rubric (scoring guide) to independently rate the simulated conversations for safe and unsafe chatbot behaviors, as well as user-agent realism. An LLM-based judge used the same scoring rubric to evaluate the same set of simulated conversations. We then compared rating alignment across (a) individual clinicians and (b) clinician consensus and the LLM judge, and (c) examined clinicians' ratings of user-agent realism. Individual clinicians were generally consistent with one another in their safety ratings (chance-corrected inter-rater reliability [IRR]: 0.77), thus establishing a gold-standard clinical reference. The LLM judge was strongly aligned with this clinical consensus (IRR: 0.81) overall and within key conditions. Clinician raters generally perceived the user-agents to be realistic. For the potential mental health benefits of AI chatbots to be realized, attention to safety is paramount. Findings from this human evaluation study support the clinical validity and reliability of VERA-MH: an open-source, fully automated AI safety evaluation for mental health. Further research will address VERA-MH generalizability and robustness.
Proactive questioning, where therapists deliberately initiate structured, cognition-guiding inquiries, is a cornerstone of cognitive behavioral therapy (CBT). Yet, current psychological large language models (LLMs) remain overwhelmingly reactive, defaulting to empathetic but superficial responses that fail to surface latent beliefs or guide behavioral change. To bridge this gap, we propose the \textbf{Socratic Inquiry Framework (SIF)}, a lightweight, plug-and-play therapeutic intent planner that transforms LLMs from passive listeners into active cognitive guides. SIF decouples \textbf{when to ask} (via Strategy Anchoring) from \textbf{what to ask} (via Template Retrieval), enabling context-aware, theory-grounded questioning without end-to-end retraining. Complementing SIF, we introduce \textbf{Socratic-QA}, a high-quality dataset of strategy-aligned Socratic sequences that provides explicit supervision for proactive reasoning. Experiments show that SIF significantly enhances proactive questioning frequency, conversational depth, and therapeutic alignment, marking a clear shift from reactive comfort to proactive exploration. Our work establishes a new paradigm for psychologically informed LLMs: not just to respond, but to guide.
This paper addresses the challenge of improving interaction quality in dialogue based learning by detecting and recommending effective pedagogical strategies in tutor student conversations. We introduce PedagoSense, a pedology grounded system that combines a two stage strategy classifier with large language model generation. The system first detects whether a pedagogical strategy is present using a binary classifier, then performs fine grained classification to identify the specific strategy. In parallel, it recommends an appropriate strategy from the dialogue context and uses an LLM to generate a response aligned with that strategy. We evaluate on human annotated tutor student dialogues, augmented with additional non pedagogical conversations for the binary task. Results show high performance for pedagogical strategy detection and consistent gains when using data augmentation, while analysis highlights where fine grained classes remain challenging. Overall, PedagoSense bridges pedagogical theory and practical LLM based response generation for more adaptive educational technologies.
The rapid digitalization of customer service has intensified the demand for conversational agents capable of providing accurate and natural interactions. In the Algerian context, this is complicated by the linguistic complexity of Darja, a dialect characterized by non-standardized orthography, extensive code-switching with French, and the simultaneous use of Arabic and Latin (Arabizi) scripts. This paper introduces DziriBOT, a hybrid intelligent conversational agent specifically engineered to overcome these challenges. We propose a multi-layered architecture that integrates specialized Natural Language Understanding (NLU) with Retrieval-Augmented Generation (RAG), allowing for both structured service flows and dynamic, knowledge-intensive responses grounded in curated enterprise documentation. To address the low-resource nature of Darja, we systematically evaluate three distinct approaches: a sparse-feature Rasa pipeline, classical machine learning baselines, and transformer-based fine-tuning. Our experimental results demonstrate that the fine-tuned DziriBERT model achieves state-of-the-art performance. These results significantly outperform traditional baselines, particularly in handling orthographic noise and rare intents. Ultimately, DziriBOT provides a robust, scalable solution that bridges the gap between formal language models and the linguistic realities of Algerian users, offering a blueprint for dialect-aware automation in the regional market.
More than 80% of the 1.6 billion English speakers do not use Standard American English (SAE) and experience higher failure rates and stereotyped responses when interacting with LLMs as a result. Yet multi-dialectal performance remains underexplored. We introduce $\textbf{MDial}$, the first large-scale framework for generating multi-dialectal conversational data encompassing the three pillars of written dialect -- lexical (vocabulary), orthographic (spelling), and morphosyntactic (grammar) features -- for nine English dialects. Partnering with native linguists, we design an annotated and scalable rule-based LLM transformation to ensure precision. Our approach challenges the assumption that models should mirror users' morphosyntactic features, showing that up to 90% of the grammatical features of a dialect should not be reproduced by models. Independent evaluations confirm data quality, with annotators preferring MDial outputs over prior methods in 98% of pairwise comparisons for dialect naturalness. Using this pipeline, we construct the dialect-parallel $\textbf{MDialBench}$mark with 50k+ dialogs, resulting in 97k+ QA pairs, and evaluate 17 LLMs on dialect identification and response generation tasks. Even frontier models achieve under 70% accuracy, fail to reach 50% for Canadian English, and systematically misclassify non-SAE dialects as American or British. As dialect identification underpins natural language understanding, these errors risk cascading failures into downstream tasks.
The escalating global mental health crisis, marked by persistent treatment gaps, availability, and a shortage of qualified therapists, positions Large Language Models (LLMs) as a promising avenue for scalable support. While LLMs offer potential for accessible emotional assistance, their reliability, therapeutic relevance, and alignment with human standards remain challenging to address. This paper introduces a human-grounded evaluation methodology designed to assess LLM generated responses in therapeutic dialogue. Our approach involved curating a dataset of 500 mental health conversations from datasets with real-world scenario questions and evaluating the responses generated by nine diverse LLMs, including closed source and open source models. More specifically, these responses were evaluated by two psychiatric trained experts, who independently rated each on a 5 point Likert scale across a comprehensive 6 attribute rubric. This rubric captures Cognitive Support and Affective Resonance, providing a multidimensional perspective on therapeutic quality. Our analysis reveals that LLMs provide strong cognitive reliability by producing safe, coherent, and clinically appropriate information, but they demonstrate unstable affective alignment. Although closed source models (e.g., GPT-4o) offer balanced therapeutic responses, open source models show greater variability and emotional flatness. We reveal a persistent cognitive-affective gap and highlight the need for failure aware, clinically grounded evaluation frameworks that prioritize relational sensitivity alongside informational accuracy in mental health oriented LLMs. We advocate for balanced evaluation protocols with human in the loop that center on therapeutic sensitivity and provide a framework to guide the responsible design and clinical oversight of mental health oriented conversational AI.