Detecting whether a model has been poisoned is a longstanding problem in AI security. In this work, we present a practical scanner for identifying sleeper agent-style backdoors in causal language models. Our approach relies on two key findings: first, sleeper agents tend to memorize poisoning data, making it possible to leak backdoor examples using memory extraction techniques. Second, poisoned LLMs exhibit distinctive patterns in their output distributions and attention heads when backdoor triggers are present in the input. Guided by these observations, we develop a scalable backdoor scanning methodology that assumes no prior knowledge of the trigger or target behavior and requires only inference operations. Our scanner integrates naturally into broader defensive strategies and does not alter model performance. We show that our method recovers working triggers across multiple backdoor scenarios and a broad range of models and fine-tuning methods.
Large language models (LLMs) are increasingly used in domains where causal reasoning matters, yet it remains unclear whether their judgments reflect normative causal computation, human-like shortcuts, or brittle pattern matching. We benchmark 20+ LLMs against a matched human baseline on 11 causal judgment tasks formalized by a collider structure ($C_1 \!\rightarrow\! E\! \leftarrow \!C_2$). We find that a small interpretable model compresses LLMs' causal judgments well and that most LLMs exhibit more rule-like reasoning strategies than humans who seem to account for unmentioned latent factors in their probability judgments. Furthermore, most LLMs do not mirror the characteristic human collider biases of weak explaining away and Markov violations. We probe LLMs' causal judgment robustness under (i) semantic abstraction and (ii) prompt overloading (injecting irrelevant text), and find that chain-of-thought (CoT) increases robustness for many LLMs. Together, this divergence suggests LLMs can complement humans when known biases are undesirable, but their rule-like reasoning may break down when uncertainty is intrinsic -- highlighting the need to characterize LLM reasoning strategies for safe, effective deployment.
Modality following serves as the capacity of multimodal large language models (MLLMs) to selectively utilize multimodal contexts based on user instructions. It is fundamental to ensuring safety and reliability in real-world deployments. However, the underlying mechanisms governing this decision-making process remain poorly understood. In this paper, we investigate its working mechanism through an information flow lens. Our findings reveal that instruction tokens function as structural anchors for modality arbitration: Shallow attention layers perform non-selective information transfer, routing multimodal cues to these anchors as a latent buffer; Modality competition is resolved within deep attention layers guided by the instruction intent, while MLP layers exhibit semantic inertia, acting as an adversarial force. Furthermore, we identify a sparse set of specialized attention heads that drive this arbitration. Causal interventions demonstrate that manipulating a mere $5\%$ of these critical heads can decrease the modality-following ratio by $60\%$ through blocking, or increase it by $60\%$ through targeted amplification of failed samples. Our work provides a substantial step toward model transparency and offers a principled framework for the orchestration of multimodal information in MLLMs.
Large Language Models (LLMs) are increasingly embedded in enterprise workflows, yet their performance remains highly sensitive to prompt design. Automatic Prompt Optimization (APO) seeks to mitigate this instability, but existing approaches face two persistent challenges. First, commonly used prompt strategies rely on static instructions that perform well on average but fail to adapt to heterogeneous queries. Second, more dynamic approaches depend on offline reward models that are fundamentally correlational, confounding prompt effectiveness with query characteristics. We propose Causal Prompt Optimization (CPO), a framework that reframes prompt design as a problem of causal estimation. CPO operates in two stages. First, it learns an offline causal reward model by applying Double Machine Learning (DML) to semantic embeddings of prompts and queries, isolating the causal effect of prompt variations from confounding query attributes. Second, it utilizes this unbiased reward signal to guide a resource-efficient search for query-specific prompts without relying on costly online evaluation. We evaluate CPO across benchmarks in mathematical reasoning, visualization, and data analytics. CPO consistently outperforms human-engineered prompts and state-of-the-art automated optimizers. The gains are driven primarily by improved robustness on hard queries, where existing methods tend to deteriorate. Beyond performance, CPO fundamentally reshapes the economics of prompt optimization: by shifting evaluation from real-time model execution to an offline causal model, it enables high-precision, per-query customization at a fraction of the inference cost required by online methods. Together, these results establish causal inference as a scalable foundation for reliable and cost-efficient prompt optimization in enterprise LLM deployments.
Protein language models (PLMs) face a fundamental divide: masked language models (MLMs) excel at fitness prediction while causal models enable generation, forcing practitioners to maintain separate architectures. We introduce \textbf{Proust}, a 309M-parameter causal PLM that bridges this gap through architectural innovations adapted from recent LLM research, including grouped-query attention with shared K/V projections, cross-layer value residuals, and depthwise causal convolutions. Trained on 33B tokens in 40 B200 GPU-hours, Proust achieves Spearman $ρ= 0.390$ on ProteinGym substitutions, competitive with MLMs requiring 50--200$\times$ the compute. On indels, Proust sets a new state-of-the-art, outperforming models up to 20$\times$ larger. On EVEREST viral fitness benchmarks, it approaches structure-aware methods using sequence alone. These powerful representations position Proust in a sweet spot as it also retains native generative capabilities that MLMs lack by design. Interpretability analysis reveals that per-position entropy variance predicts, to an extent, when retrieval augmentation helps and hurts. Such insights can grow in both quantity and quality at scale and inform capabilities such as test-time scaling. Code and weights are available at https://github.com/Furkan9015/proust-inference
Traditional Deep Learning Recommendation Models (DLRMs) face increasing bottlenecks in performance and efficiency, often struggling with generalization and long-sequence modeling. Inspired by the scaling success of Large Language Models (LLMs), we propose Generative Ranking for Ads at Baidu (GRAB), an end-to-end generative framework for Click-Through Rate (CTR) prediction. GRAB integrates a novel Causal Action-aware Multi-channel Attention (CamA) mechanism to effectively capture temporal dynamics and specific action signals within user behavior sequences. Full-scale online deployment demonstrates that GRAB significantly outperforms established DLRMs, delivering a 3.05% increase in revenue and a 3.49% rise in CTR. Furthermore, the model demonstrates desirable scaling behavior: its expressive power shows a monotonic and approximately linear improvement as longer interaction sequences are utilized.
Following their success across many domains, transformers have also proven effective for symbolic regression (SR); however, the internal mechanisms underlying their generation of mathematical operators remain largely unexplored. Although mechanistic interpretability has successfully identified circuits in language and vision models, it has not yet been applied to SR. In this article, we introduce PATCHES, an evolutionary circuit discovery algorithm that identifies compact and correct circuits for SR. Using PATCHES, we isolate 28 circuits, providing the first circuit-level characterisation of an SR transformer. We validate these findings through a robust causal evaluation framework based on key notions such as faithfulness, completeness, and minimality. Our analysis shows that mean patching with performance-based evaluation most reliably isolates functionally correct circuits. In contrast, we demonstrate that direct logit attribution and probing classifiers primarily capture correlational features rather than causal ones, limiting their utility for circuit discovery. Overall, these results establish SR as a high-potential application domain for mechanistic interpretability and propose a principled methodology for circuit discovery.
Token attribution methods provide intuitive explanations for language model outputs by identifying causally important input tokens. However, as modern LLMs increasingly rely on extended reasoning chains, existing schemes face two critical challenges: (1) efficiency bottleneck, where attributing a target span of M tokens within a context of length N requires O(M*N) operations, making long-context attribution prohibitively slow; and (2) faithfulness drop, where intermediate reasoning tokens absorb attribution mass, preventing importance from propagating back to the original input. To address these, we introduce FlashTrace, an efficient multi-token attribution method that employs span-wise aggregation to compute attribution over multi-token targets in a single pass, while maintaining faithfulness. Moreover, we design a recursive attribution mechanism that traces importance through intermediate reasoning chains back to source inputs. Extensive experiments on long-context retrieval (RULER) and multi-step reasoning (MATH, MorehopQA) tasks demonstrate that FlashTrace achieves over 130x speedup over existing baselines while maintaining superior faithfulness. We further analyze the dynamics of recursive attribution, showing that even a single recursive hop improves faithfulness by tracing importance through the reasoning chain.
Time series forecasting can be viewed as a generative problem that requires both semantic understanding over contextual conditions and stochastic modeling of continuous temporal dynamics. Existing approaches typically rely on either autoregressive large language models (LLMs) for semantic context modeling or diffusion-like models for continuous probabilistic generation. However, neither method alone can adequately model both aspects simultaneously. In this work, we propose CoGenCast, a hybrid generative framework that couples pre-trained LLMs with flow-matching mechanism for effective time series forecasting. Specifically, we reconfigure pre-trained decoder-only LLMs into a native forecasting encoder-decoder backbone by modifying only the attention topology, enabling bidirectional context encoding and causal representation generation. Building on this, a flow-matching mechanism is further integrated to model temporal evolution, capturing continuous stochastic dynamics conditioned on the autoregressively generated representation. Notably, CoGenCast naturally supports multimodal forecasting and cross-domain unified training. Extensive experiments on multiple benchmarks show that CoGenCast consistently outperforms previous compared baselines. Code is available at https://github.com/liuyaguo/_CoGenCast.
World models offer a principled framework for simulating future states under interventions, but realizing such models in complex, high-stakes domains like medicine remains challenging. Recent large language models (LLMs) have achieved strong performance on static medical reasoning tasks, raising the question of whether they can function as dynamic medical world models capable of simulating disease progression and treatment outcomes over time. In this work, we show that LLMs only incorporating medical knowledge struggle to maintain consistent patient states under sequential interventions, leading to error accumulation in long-horizon clinical simulation. To address this limitation, we introduce EHRWorld, a patient-centric medical world model trained under a causal sequential paradigm, together with EHRWorld-110K, a large-scale longitudinal clinical dataset derived from real-world electronic health records. Extensive evaluations demonstrate that EHRWorld significantly outperforms naive LLM-based baselines, achieving more stable long-horizon simulation, improved modeling of clinically sensitive events, and favorable reasoning efficiency, highlighting the necessity of training on causally grounded, temporally evolving clinical data for reliable and robust medical world modeling.