Abstract:Large language models (LLMs) achieve superhuman performance on complex reasoning tasks, yet often fail on much simpler problems, raising concerns about their reliability and interpretability. We investigate this paradox through a focused study with two key design features: simplicity, to expose basic failure modes, and scale, to enable comprehensive controlled experiments. We focus on set membership queries -- among the most fundamental forms of reasoning -- using tasks like ``Is apple an element of the set \{pear, plum, apple, raspberry\}?''. We conduct a systematic empirical evaluation across prompt phrasing, semantic structure, element ordering, and model choice. Our large-scale analysis reveals that LLM performance on this elementary task is consistently brittle, and unpredictable across all dimensions, suggesting that the models' ``understanding'' of the set concept is fragmented and convoluted at best. Our work demonstrates that the large-scale experiments enabled by the simplicity of the problem allow us to map and analyze the failure modes comprehensively, making this approach a valuable methodology for LLM evaluation in general.
Abstract:Measuring the similarity of the internal representations of deep neural networks is an important and challenging problem. Model stitching has been proposed as a possible approach, where two half-networks are connected by mapping the output of the first half-network to the input of the second one. The representations are considered functionally similar if the resulting stitched network achieves good task-specific performance. The mapping is normally created by training an affine stitching layer on the task at hand while freezing the two half-networks, a method called task loss matching. Here, we argue that task loss matching may be very misleading as a similarity index. For example, it can indicate very high similarity between very distant layers, whose representations are known to have different functional properties. Moreover, it can indicate very distant layers to be more similar than architecturally corresponding layers. Even more surprisingly, when comparing layers within the same network, task loss matching often indicates that some layers are more similar to a layer than itself. We argue that the main reason behind these problems is that task loss matching tends to create out-of-distribution representations to improve task-specific performance. We demonstrate that direct matching (when the mapping minimizes the distance between the stitched representations) does not suffer from these problems. We compare task loss matching, direct matching, and well-known similarity indices such as CCA and CKA. We conclude that direct matching strikes a good balance between the structural and functional requirements for a good similarity index.




Abstract:Machine learning over fully distributed data poses an important problem in peer-to-peer (P2P) applications. In this model we have one data record at each network node, but without the possibility to move raw data due to privacy considerations. For example, user profiles, ratings, history, or sensor readings can represent this case. This problem is difficult, because there is no possibility to learn local models, the system model offers almost no guarantees for reliability, yet the communication cost needs to be kept low. Here we propose gossip learning, a generic approach that is based on multiple models taking random walks over the network in parallel, while applying an online learning algorithm to improve themselves, and getting combined via ensemble learning methods. We present an instantiation of this approach for the case of classification with linear models. Our main contribution is an ensemble learning method which---through the continuous combination of the models in the network---implements a virtual weighted voting mechanism over an exponential number of models at practically no extra cost as compared to independent random walks. We prove the convergence of the method theoretically, and perform extensive experiments on benchmark datasets. Our experimental analysis demonstrates the performance and robustness of the proposed approach.