Abstract:Misinformation remains one of the most significant issues in the digital age. While automated fact-checking has emerged as a viable solution, most current systems are limited to evaluating factual accuracy. However, the detrimental effect of misinformation transcends simple falsehoods; it takes advantage of how individuals perceive, interpret, and emotionally react to information. This underscores the need to move beyond factuality and adopt more human-centered detection frameworks. In this survey, we explore the evolving interplay between traditional fact-checking approaches and psychological concepts such as cognitive biases, social dynamics, and emotional responses. By analyzing state-of-the-art misinformation detection systems through the lens of human psychology and behavior, we reveal critical limitations of current methods and identify opportunities for improvement. Additionally, we outline future research directions aimed at creating more robust and adaptive frameworks, such as neuro-behavioural models that integrate technological factors with the complexities of human cognition and social influence. These approaches offer promising pathways to more effectively detect and mitigate the societal harms of misinformation.
Abstract:Large Language Models (LLMs) with safe-alignment training are powerful instruments with robust language comprehension capabilities. These models typically undergo meticulous alignment procedures involving human feedback to ensure the acceptance of safe inputs while rejecting harmful or unsafe ones. However, despite their massive scale and alignment efforts, LLMs remain vulnerable to jailbreak attacks, where malicious users manipulate the model to produce harmful outputs that it was explicitly trained to avoid. In this study, we find that the safety mechanisms in LLMs are predominantly embedded in the middle-to-late layers. Building on this insight, we introduce a novel white-box jailbreak method, SABER (Safety Alignment Bypass via Extra Residuals), which connects two intermediate layers $s$ and $e$ such that $s < e$, through a residual connection. Our approach achieves a 51% improvement over the best-performing baseline on the HarmBench test set. Furthermore, SABER induces only a marginal shift in perplexity when evaluated on the HarmBench validation set. The source code is publicly available at https://github.com/PalGitts/SABER.
Abstract:Key-value (KV) cache compression has emerged as a critical technique for reducing the memory and latency overhead of autoregressive language models during inference. Prior approaches predominantly rely on query-key attention scores to rank and evict cached tokens, assuming that attention intensity correlates with semantic importance. However, this heuristic overlooks the contribution of value vectors, which directly influence the attention output. In this paper, we propose CurDKV, a novel, value-centric KV compression method that selects keys and values based on leverage scores computed from CUR matrix decomposition. Our approach approximates the dominant subspace of the attention output $softmax(QK^T)V$, ensuring that the retained tokens best preserve the model's predictive behavior. Theoretically, we show that attention score approximation does not guarantee output preservation, and demonstrate that CUR-based selection minimizes end-to-end attention reconstruction loss. Empirically, CurDKV achieves up to 9.6% higher accuracy than state-of-the-art methods like SnapKV and ChunkKV under aggressive compression budgets on LLaMA and Mistral, while maintaining compatibility with FlashAttention and Grouped Query Attention. In addition to improved accuracy, CurDKV reduces generation latency by up to 40% at high compression, offering a practical speed-accuracy tradeoff.
Abstract:The growing demand for scalable psychological counseling highlights the need for fine-tuning open-source Large Language Models (LLMs) with high-quality, privacy-compliant data, yet such data remains scarce. Here we introduce MAGneT, a novel multi-agent framework for synthetic psychological counseling session generation that decomposes counselor response generation into coordinated sub-tasks handled by specialized LLM agents, each modeling a key psychological technique. Unlike prior single-agent approaches, MAGneT better captures the structure and nuance of real counseling. In addition, we address inconsistencies in prior evaluation protocols by proposing a unified evaluation framework integrating diverse automatic and expert metrics. Furthermore, we expand the expert evaluations from four aspects of counseling in previous works to nine aspects, enabling a more thorough and robust assessment of data quality. Empirical results show that MAGneT significantly outperforms existing methods in quality, diversity, and therapeutic alignment of the generated counseling sessions, improving general counseling skills by 3.2% and CBT-specific skills by 4.3% on average on cognitive therapy rating scale (CTRS). Crucially, experts prefer MAGneT-generated sessions in 77.2% of cases on average across all aspects. Moreover, fine-tuning an open-source model on MAGneT-generated sessions shows better performance, with improvements of 6.3% on general counseling skills and 7.3% on CBT-specific skills on average on CTRS over those fine-tuned with sessions generated by baseline methods. We also make our code and data public.
Abstract:Instruction Tuning has emerged as a pivotal post-training paradigm that enables pre-trained language models to better follow user instructions. Despite its significance, little attention has been given to optimizing the loss function used. A fundamental, yet often overlooked, question is whether the conventional auto-regressive objective - where loss is computed only on response tokens, excluding prompt tokens - is truly optimal for instruction tuning. In this work, we systematically investigate the impact of differentially weighting prompt and response tokens in instruction tuning loss, and propose Weighted Instruction Tuning (WIT) as a better alternative to conventional instruction tuning. Through extensive experiments on five language models of different families and scale, three finetuning datasets of different sizes, and five diverse evaluation benchmarks, we show that the standard instruction tuning loss often yields suboptimal performance and limited robustness to input prompt variations. We find that a low-to-moderate weight for prompt tokens coupled with a moderate-to-high weight for response tokens yields the best-performing models across settings and also serve as better starting points for the subsequent preference alignment training. These findings highlight the need to reconsider instruction tuning loss and offer actionable insights for developing more robust and generalizable models. Our code is open-sourced at https://github.com/kowndinya-renduchintala/WIT.
Abstract:Recent voxel-wise multimodal brain encoding studies have shown that multimodal large language models (MLLMs) exhibit a higher degree of brain alignment compared to unimodal models in both unimodal and multimodal stimulus settings. More recently, instruction-tuned multimodal models have shown to generate task-specific representations that align strongly with brain activity. However, prior work evaluating the brain alignment of MLLMs has primarily focused on unimodal settings or relied on non-instruction-tuned multimodal models for multimodal stimuli. To address this gap, we investigated brain alignment, that is, measuring the degree of predictivity of neural activity recorded while participants were watching naturalistic movies (video along with audio) with representations derived from MLLMs. We utilized instruction-specific embeddings from six video and two audio instruction-tuned MLLMs. Experiments with 13 video task-specific instructions show that instruction-tuned video MLLMs significantly outperform non-instruction-tuned multimodal (by 15%) and unimodal models (by 20%). Our evaluation of MLLMs for both video and audio tasks using language-guided instructions shows clear disentanglement in task-specific representations from MLLMs, leading to precise differentiation of multimodal functional processing in the brain. We also find that MLLM layers align hierarchically with the brain, with early sensory areas showing strong alignment with early layers, while higher-level visual and language regions align more with middle to late layers. These findings provide clear evidence for the role of task-specific instructions in improving the alignment between brain activity and MLLMs, and open new avenues for mapping joint information processing in both the systems. We make the code publicly available [https://github.com/subbareddy248/mllm_videos].
Abstract:Social media platforms have traditionally relied on internal moderation teams and partnerships with independent fact-checking organizations to identify and flag misleading content. Recently, however, platforms including X (formerly Twitter) and Meta have shifted towards community-driven content moderation by launching their own versions of crowd-sourced fact-checking -- Community Notes. If effectively scaled and governed, such crowd-checking initiatives have the potential to combat misinformation with increased scale and speed as successfully as community-driven efforts once did with spam. Nevertheless, general content moderation, especially for misinformation, is inherently more complex. Public perceptions of truth are often shaped by personal biases, political leanings, and cultural contexts, complicating consensus on what constitutes misleading content. This suggests that community efforts, while valuable, cannot replace the indispensable role of professional fact-checkers. Here we systemically examine the current approaches to misinformation detection across major platforms, explore the emerging role of community-driven moderation, and critically evaluate both the promises and challenges of crowd-checking at scale.
Abstract:Test-time scaling (TTS), which involves dynamic allocation of compute during inference, offers a promising way to improve reasoning in large language models. While existing TTS methods work well, they often rely on long decoding paths or require a large number of samples to be generated, increasing the token usage and inference latency. We observe the surprising fact that for reasoning tasks, shorter traces are much more likely to be correct than longer ones. Motivated by this, we introduce First Finish Search (FFS), a training-free parallel decoding strategy that launches $n$ independent samples and returns as soon as any one completes. We evaluate FFS alongside simple decoding, beam search, majority voting, and budget forcing on four reasoning models (DeepSeek-R1, R1-Distill-Qwen-32B, QwQ-32B and Phi-4-Reasoning-Plus) and across four datasets (AIME24, AIME25-I, AIME25-II and GPQA Diamond). With DeepSeek-R1, FFS achieves $82.23\%$ accuracy on the AIME datasets, a $15\%$ improvement over DeepSeek-R1's standalone accuracy, nearly matching OpenAI's o4-mini performance. Our theoretical analysis explains why stopping at the shortest trace is likely to yield a correct answer and identifies the conditions under which early stopping may be suboptimal. The elegance and simplicity of FFS demonstrate that straightforward TTS strategies can perform remarkably well, revealing the untapped potential of simple approaches at inference time.
Abstract:Test-time scaling has emerged as a widely adopted inference-time strategy for boosting reasoning performance. However, its effectiveness has been studied almost exclusively in English, leaving its behavior in other languages largely unexplored. We present the first systematic study of test-time scaling in multilingual settings, evaluating DeepSeek-R1-Distill-LLama-8B and DeepSeek-R1-Distill-Qwen-7B across both high- and low-resource Latin-script languages. Our findings reveal that the relative gains from test-time scaling vary significantly across languages. Additionally, models frequently switch to English mid-reasoning, even when operating under strictly monolingual prompts. We further show that low-resource languages not only produce initial reasoning thoughts that differ significantly from English but also have lower internal consistency across generations in their early reasoning. Building on our findings, we introduce MITT (Multilingual Initial Thought Transfer), an unsupervised and lightweight reasoning prefix-tuning approach that transfers high-resource reasoning prefixes to enhance test-time scaling across all languages, addressing inconsistencies in multilingual reasoning performance. MITT significantly boosts DeepSeek-R1-Distill-Qwen-7B's reasoning performance, especially for underrepresented languages.
Abstract:Knowledge distillation (KD) is a key technique for compressing large language models into smaller ones while preserving performance. Despite the recent traction of KD research, its effectiveness for smaller language models (LMs) and the mechanisms driving knowledge transfer remain underexplored. In this work, we present the first large-scale empirical and statistical analysis of KD across models ranging from 0.5B to 7B parameters on 14 complex reasoning tasks in a zero-shot setting. Our findings reveal that KD can improve the average performance of smaller models by up to $10\%$, with a peak task specific gain of $22\%$, while providing only marginal benefits ($\sim 1.3\%$) for larger models. Surprisingly, teacher performance has a minimal impact on student outcomes, while teacher task expertise impacts KD effectiveness. A correlation study indicates that smaller LMs benefit more from KD, whereas larger LMs show diminished gains. Additionally, we uncover a misalignment between improvements in student performance and reasoning fidelity, suggesting that while KD enhances accuracy, it does not always maintain the structured decision-making processes of the teacher. Our ablation study further highlights the importance of teacher signals and logit smoothing in influencing students' performance after distillation. Overall, our study offers a comprehensive empirical and statistical assessment of KD, highlighting both its benefits and trade-offs when distilling knowledge from larger to smaller LMs.