Abstract:The rapid evolution of large language models (LLMs) has expanded their capabilities from basic dialogue to advanced scientific reasoning. However, existing benchmarks in biology often fail to assess a critical skill required of researchers: the ability to integrate experimental results with contextual knowledge to derive meaningful conclusions. To address this gap, we introduce BABE(Biology Arena BEnchmark), a comprehensive benchmark designed to evaluate the experimental reasoning capabilities of biological AI systems. BABE is uniquely constructed from peer-reviewed research papers and real-world biological studies, ensuring that tasks reflect the complexity and interdisciplinary nature of actual scientific inquiry. BABE challenges models to perform causal reasoning and cross-scale inference. Our benchmark provides a robust framework for assessing how well AI systems can reason like practicing scientists, offering a more authentic measure of their potential to contribute to biological research.
Abstract:Benchmarks play a crucial role in tracking the rapid advancement of large language models (LLMs) and identifying their capability boundaries. However, existing benchmarks predominantly curate questions at the question level, suffering from three fundamental limitations: vulnerability to data contamination, restriction to single-knowledge-point assessment, and reliance on costly domain expert annotation. We propose Encyclo-K, a statement-based benchmark that rethinks benchmark construction from the ground up. Our key insight is that knowledge statements, not questions, can serve as the unit of curation, and questions can then be constructed from them. We extract standalone knowledge statements from authoritative textbooks and dynamically compose them into evaluation questions through random sampling at test time. This design directly addresses all three limitations: the combinatorial space is too vast to memorize, and model rankings remain stable across dynamically generated question sets, enabling reliable periodic dataset refresh; each question aggregates 8-10 statements for comprehensive multi-knowledge assessment; annotators only verify formatting compliance without requiring domain expertise, substantially reducing annotation costs. Experiments on over 50 LLMs demonstrate that Encyclo-K poses substantial challenges with strong discriminative power. Even the top-performing OpenAI-GPT-5.1 achieves only 62.07% accuracy, and model performance displays a clear gradient distribution--reasoning models span from 16.04% to 62.07%, while chat models range from 9.71% to 50.40%. These results validate the challenges introduced by dynamic evaluation and multi-statement comprehensive understanding. These findings establish Encyclo-K as a scalable framework for dynamic evaluation of LLMs' comprehensive understanding over multiple fine-grained disciplinary knowledge statements.