As aerial platforms evolve from passive observers to active manipulators, the challenge shifts toward designing intuitive interfaces that allow non-expert users to command these systems naturally. This work introduces a novel concept of autonomous aerial manipulation system capable of interpreting high-level natural language commands to retrieve objects and deliver them to a human user. The system is intended to integrate a MediaPipe based on Grounding DINO and a Vision-Language-Action (VLA) model with a custom-built drone equipped with a 1-DOF gripper and an Intel RealSense RGB-D camera. VLA performs semantic reasoning to interpret the intent of a user prompt and generates a prioritized task queue for grasping of relevant objects in the scene. Grounding DINO and dynamic A* planning algorithm are used to navigate and safely relocate the object. To ensure safe and natural interaction during the handover phase, the system employs a human-centric controller driven by MediaPipe. This module provides real-time human pose estimation, allowing the drone to employ visual servoing to maintain a stable, distinct position directly in front of the user, facilitating a comfortable handover. We demonstrate the system's efficacy through real-world experiments for localization and navigation, which resulted in a 0.164m, 0.070m, and 0.084m of max, mean euclidean, and root-mean squared errors, respectively, highlighting the feasibility of VLA for aerial manipulation operations.
We present CogniMap3D, a bioinspired framework for dynamic 3D scene understanding and reconstruction that emulates human cognitive processes. Our approach maintains a persistent memory bank of static scenes, enabling efficient spatial knowledge storage and rapid retrieval. CogniMap3D integrates three core capabilities: a multi-stage motion cue framework for identifying dynamic objects, a cognitive mapping system for storing, recalling, and updating static scenes across multiple visits, and a factor graph optimization strategy for refining camera poses. Given an image stream, our model identifies dynamic regions through motion cues with depth and camera pose priors, then matches static elements against its memory bank. When revisiting familiar locations, CogniMap3D retrieves stored scenes, relocates cameras, and updates memory with new observations. Evaluations on video depth estimation, camera pose reconstruction, and 3D mapping tasks demonstrate its state-of-the-art performance, while effectively supporting continuous scene understanding across extended sequences and multiple visits.




Visual localization has traditionally been formulated as a pair-wise pose regression problem. Existing approaches mainly estimate relative poses between two images and employ a late-fusion strategy to obtain absolute pose estimates. However, the late motion average is often insufficient for effectively integrating spatial information, and its accuracy degrades in complex environments. In this paper, we present the first visual localization framework that performs multi-view spatial integration through an early-fusion mechanism, enabling robust operation in both structured and unstructured environments. Our framework is built upon the VGGT backbone, which encodes multi-view 3D geometry, and we introduce a pose tokenizer and projection module to more effectively exploit spatial relationships from multiple database views. Furthermore, we propose a novel sparse mask attention strategy that reduces computational cost by avoiding the quadratic complexity of global attention, thereby enabling real-time performance at scale. Trained on approximately eight million posed image pairs, Reloc-VGGT demonstrates strong accuracy and remarkable generalization ability. Extensive experiments across diverse public datasets consistently validate the effectiveness and efficiency of our approach, delivering high-quality camera pose estimates in real time while maintaining robustness to unseen environments. Our code and models will be publicly released upon acceptance.https://github.com/dtc111111/Reloc-VGGT.



Arthroscopic procedures can greatly benefit from navigation systems that enhance spatial awareness, depth perception, and field of view. However, existing optical tracking solutions impose strict workspace constraints and disrupt surgical workflow. Vision-based alternatives, though less invasive, often rely solely on the monocular arthroscope camera, making them prone to drift, scale ambiguity, and sensitivity to rapid motion or occlusion. We propose DualVision ArthroNav, a multi-camera arthroscopy navigation system that integrates an external camera rigidly mounted on the arthroscope. The external camera provides stable visual odometry and absolute localization, while the monocular arthroscope video enables dense scene reconstruction. By combining these complementary views, our system resolves the scale ambiguity and long-term drift inherent in monocular SLAM and ensures robust relocalization. Experiments demonstrate that our system effectively compensates for calibration errors, achieving an average absolute trajectory error of 1.09 mm. The reconstructed scenes reach an average target registration error of 2.16 mm, with high visual fidelity (SSIM = 0.69, PSNR = 22.19). These results indicate that our system provides a practical and cost-efficient solution for arthroscopic navigation, bridging the gap between optical tracking and purely vision-based systems, and paving the way toward clinically deployable, fully vision-based arthroscopic guidance.
Scene coordinate regression (SCR) models have proven to be powerful implicit scene representations for 3D vision, enabling visual relocalization and structure-from-motion. SCR models are trained specifically for one scene. If training images imply insufficient multi-view constraints SCR models degenerate. We present a probabilistic reinterpretation of training SCR models, which allows us to infuse high-level reconstruction priors. We investigate multiple such priors, ranging from simple priors over the distribution of reconstructed depth values to learned priors over plausible scene coordinate configurations. For the latter, we train a 3D point cloud diffusion model on a large corpus of indoor scans. Our priors push predicted 3D scene points towards plausible geometry at each training step to increase their likelihood. On three indoor datasets our priors help learning better scene representations, resulting in more coherent scene point clouds, higher registration rates and better camera poses, with a positive effect on down-stream tasks such as novel view synthesis and camera relocalization.




The presence of Non-Line-of-Sight (NLoS) blind spots resulting from roadside parking in urban environments poses a significant challenge to road safety, particularly due to the sudden emergence of pedestrians. mmWave technology leverages diffraction and reflection to observe NLoS regions, and recent studies have demonstrated its potential for detecting obscured objects. However, existing approaches predominantly rely on predefined spatial information or assume simple wall reflections, thereby limiting their generalizability and practical applicability. A particular challenge arises in scenarios where pedestrians suddenly appear from between parked vehicles, as these parked vehicles act as temporary spatial obstructions. Furthermore, since parked vehicles are dynamic and may relocate over time, spatial information obtained from satellite maps or other predefined sources may not accurately reflect real-time road conditions, leading to erroneous sensor interpretations. To address this limitation, we propose an NLoS pedestrian localization framework that integrates monocular camera image with 2D radar point cloud (PCD) data. The proposed method initially detects parked vehicles through image segmentation, estimates depth to infer approximate spatial characteristics, and subsequently refines this information using 2D radar PCD to achieve precise spatial inference. Experimental evaluations conducted in real-world urban road environments demonstrate that the proposed approach enhances early pedestrian detection and contributes to improved road safety. Supplementary materials are available at https://hiyeun.github.io/NLoS/.




This paper presents a novel camera relocalization method, STDLoc, which leverages Feature Gaussian as scene representation. STDLoc is a full relocalization pipeline that can achieve accurate relocalization without relying on any pose prior. Unlike previous coarse-to-fine localization methods that require image retrieval first and then feature matching, we propose a novel sparse-to-dense localization paradigm. Based on this scene representation, we introduce a novel matching-oriented Gaussian sampling strategy and a scene-specific detector to achieve efficient and robust initial pose estimation. Furthermore, based on the initial localization results, we align the query feature map to the Gaussian feature field by dense feature matching to enable accurate localization. The experiments on indoor and outdoor datasets show that STDLoc outperforms current state-of-the-art localization methods in terms of localization accuracy and recall.




Precise camera localization is a critical task in XR applications and robotics. Using only the camera captures as input to a system is an inexpensive option that enables localization in large indoor and outdoor environments, but it presents challenges in achieving high accuracy. Specifically, camera relocalization methods, such as Absolute Pose Regression (APR), can localize cameras with a median translation error of more than $0.5m$ in outdoor scenes. This paper presents HAL-NeRF, a high-accuracy localization method that combines a CNN pose regressor with a refinement module based on a Monte Carlo particle filter. The Nerfacto model, an implementation of Neural Radiance Fields (NeRFs), is used to augment the data for training the pose regressor and to measure photometric loss in the particle filter refinement module. HAL-NeRF leverages Nerfacto's ability to synthesize high-quality novel views, significantly improving the performance of the localization pipeline. HAL-NeRF achieves state-of-the-art results that are conventionally measured as the average of the median per scene errors. The translation error was $0.025m$ and the rotation error was $0.59$ degrees and 0.04m and 0.58 degrees on the 7-Scenes dataset and Cambridge Landmarks datasets respectively, with the trade-off of increased computational time. This work highlights the potential of combining APR with NeRF-based refinement techniques to advance monocular camera relocalization accuracy.




We propose R3GS, a robust reconstruction and relocalization framework tailored for unconstrained datasets. Our method uses a hybrid representation during training. Each anchor combines a global feature from a convolutional neural network (CNN) with a local feature encoded by the multiresolution hash grids [2]. Subsequently, several shallow multi-layer perceptrons (MLPs) predict the attributes of each Gaussians, including color, opacity, and covariance. To mitigate the adverse effects of transient objects on the reconstruction process, we ffne-tune a lightweight human detection network. Once ffne-tuned, this network generates a visibility map that efffciently generalizes to other transient objects (such as posters, banners, and cars) with minimal need for further adaptation. Additionally, to address the challenges posed by sky regions in outdoor scenes, we propose an effective sky-handling technique that incorporates a depth prior as a constraint. This allows the inffnitely distant sky to be represented on the surface of a large-radius sky sphere, signiffcantly reducing ffoaters caused by errors in sky reconstruction. Furthermore, we introduce a novel relocalization method that remains robust to changes in lighting conditions while estimating the camera pose of a given image within the reconstructed 3DGS scene. As a result, R3GS significantly enhances rendering ffdelity, improves both training and rendering efffciency, and reduces storage requirements. Our method achieves state-of-the-art performance compared to baseline methods on in-the-wild datasets. The code will be made open-source following the acceptance of the paper.
In this paper, we present a new approach for improving 3D point and line mapping regression for camera re-localization. Previous methods typically rely on feature matching (FM) with stored descriptors or use a single network to encode both points and lines. While FM-based methods perform well in large-scale environments, they become computationally expensive with a growing number of mapping points and lines. Conversely, approaches that learn to encode mapping features within a single network reduce memory footprint but are prone to overfitting, as they may capture unnecessary correlations between points and lines. We propose that these features should be learned independently, each with a distinct focus, to achieve optimal accuracy. To this end, we introduce a new architecture that learns to prioritize each feature independently before combining them for localization. Experimental results demonstrate that our approach significantly enhances the 3D map point and line regression performance for camera re-localization. The implementation of our method will be publicly available at: https://github.com/ais-lab/pl2map/.