Space Center, Skolkovo Institute of Science and Technology
Abstract:Diffusion models have been successfully applied in areas such as image, video, and audio generation. Recent works show their promise for sequential decision-making and dexterous manipulation, leveraging their ability to model complex action distributions. However, challenges persist due to the data limitations and scenario-specific adaptation needs. In this paper, we address these challenges by proposing an optimized approach to training diffusion policies using large, pre-built datasets that are enhanced using Reinforcement Learning (RL). Our end-to-end pipeline leverages RL-based enhancement of the DexGraspNet dataset, lightweight diffusion policy training on a dexterous manipulation task for a five-fingered robotic hand, and a pose sampling algorithm for validation. The pipeline achieved a high success rate of 80% for three DexGraspNet objects. By eliminating manual data collection, our approach lowers barriers to adopting diffusion models in robotics, enhancing generalization and robustness for real-world applications.
Abstract:We present UAV-CodeAgents, a scalable multi-agent framework for autonomous UAV mission generation, built on large language and vision-language models (LLMs/VLMs). The system leverages the ReAct (Reason + Act) paradigm to interpret satellite imagery, ground high-level natural language instructions, and collaboratively generate UAV trajectories with minimal human supervision. A core component is a vision-grounded, pixel-pointing mechanism that enables precise localization of semantic targets on aerial maps. To support real-time adaptability, we introduce a reactive thinking loop, allowing agents to iteratively reflect on observations, revise mission goals, and coordinate dynamically in evolving environments. UAV-CodeAgents is evaluated on large-scale mission scenarios involving industrial and environmental fire detection. Our results show that a lower decoding temperature (0.5) yields higher planning reliability and reduced execution time, with an average mission creation time of 96.96 seconds and a success rate of 93%. We further fine-tune Qwen2.5VL-7B on 9,000 annotated satellite images, achieving strong spatial grounding across diverse visual categories. To foster reproducibility and future research, we will release the full codebase and a novel benchmark dataset for vision-language-based UAV planning.
Abstract:The aim of this work is to enable quadrupedal robots to mount skateboards using Reverse Curriculum Reinforcement Learning. Although prior work has demonstrated skateboarding for quadrupeds that are already positioned on the board, the initial mounting phase still poses a significant challenge. A goal-oriented methodology was adopted, beginning with the terminal phases of the task and progressively increasing the complexity of the problem definition to approximate the desired objective. The learning process was initiated with the skateboard rigidly fixed within the global coordinate frame and the robot positioned directly above it. Through gradual relaxation of these initial conditions, the learned policy demonstrated robustness to variations in skateboard position and orientation, ultimately exhibiting a successful transfer to scenarios involving a mobile skateboard. The code, trained models, and reproducible examples are available at the following link: https://github.com/dancher00/quadruped-skateboard-mounting
Abstract:Quadcopters are versatile aerial robots gaining popularity in numerous critical applications. However, their operational effectiveness is constrained by limited battery life and restricted flight range. To address these challenges, autonomous drone landing on stationary or mobile charging and battery-swapping stations has become an essential capability. In this study, we present NMPC-Lander, a novel control architecture that integrates Nonlinear Model Predictive Control (NMPC) with Control Barrier Functions (CBF) to achieve precise and safe autonomous landing on both static and dynamic platforms. Our approach employs NMPC for accurate trajectory tracking and landing, while simultaneously incorporating CBF to ensure collision avoidance with static obstacles. Experimental evaluations on the real hardware demonstrate high precision in landing scenarios, with an average final position error of 9.0 cm and 11 cm for stationary and mobile platforms, respectively. Notably, NMPC-Lander outperforms the B-spline combined with the A* planning method by nearly threefold in terms of position tracking, underscoring its superior robustness and practical effectiveness.
Abstract:This paper introduces HapticVLM, a novel multimodal system that integrates vision-language reasoning with deep convolutional networks to enable real-time haptic feedback. HapticVLM leverages a ConvNeXt-based material recognition module to generate robust visual embeddings for accurate identification of object materials, while a state-of-the-art Vision-Language Model (Qwen2-VL-2B-Instruct) infers ambient temperature from environmental cues. The system synthesizes tactile sensations by delivering vibrotactile feedback through speakers and thermal cues via a Peltier module, thereby bridging the gap between visual perception and tactile experience. Experimental evaluations demonstrate an average recognition accuracy of 84.67% across five distinct auditory-tactile patterns and a temperature estimation accuracy of 86.7% based on a tolerance-based evaluation method with an 8{\deg}C margin of error across 15 scenarios. Although promising, the current study is limited by the use of a small set of prominent patterns and a modest participant pool. Future work will focus on expanding the range of tactile patterns and increasing user studies to further refine and validate the system's performance. Overall, HapticVLM presents a significant step toward context-aware, multimodal haptic interaction with potential applications in virtual reality, and assistive technologies.
Abstract:This paper presents a novel mapping approach for a universal aerial-ground robotic system utilizing a single monocular camera. The proposed system is capable of detecting a diverse range of objects and estimating their positions without requiring fine-tuning for specific environments. The system's performance was evaluated through a simulated search-and-rescue scenario, where the MorphoGear robot successfully located a robotic dog while an operator monitored the process. This work contributes to the development of intelligent, multimodal robotic systems capable of operating in unstructured environments.
Abstract:We present an intuitive human-drone interaction system that utilizes a gesture-based motion controller to enhance the drone operation experience in real and simulated environments. The handheld motion controller enables natural control of the drone through the movements of the operator's hand, thumb, and index finger: the trigger press manages the throttle, the tilt of the hand adjusts pitch and roll, and the thumbstick controls yaw rotation. Communication with drones is facilitated via the ExpressLRS radio protocol, ensuring robust connectivity across various frequencies. The user evaluation of the flight experience with the designed drone controller using the UEQ-S survey showed high scores for both Pragmatic (mean=2.2, SD = 0.8) and Hedonic (mean=2.3, SD = 0.9) Qualities. This versatile control interface supports applications such as research, drone racing, and training programs in real and simulated environments, thereby contributing to advances in the field of human-drone interaction.
Abstract:In this article, we propose Echo, a novel joint-matching teleoperation system designed to enhance the collection of datasets for manual and bimanual tasks. Our system is specifically tailored for controlling the UR manipulator and features a custom controller with force feedback and adjustable sensitivity modes, enabling precise and intuitive operation. Additionally, Echo integrates a user-friendly dataset recording interface, simplifying the process of collecting high-quality training data for imitation learning. The system is designed to be reliable, cost-effective, and easily reproducible, making it an accessible tool for researchers, laboratories, and startups passionate about advancing robotics through imitation learning. Although the current implementation focuses on the UR manipulator, Echo architecture is reconfigurable and can be adapted to other manipulators and humanoid systems. We demonstrate the effectiveness of Echo through a series of experiments, showcasing its ability to perform complex bimanual tasks and its potential to accelerate research in the field. We provide assembly instructions, a hardware description, and code at https://eterwait.github.io/Echo/.
Abstract:This paper presents CONTHER, a novel reinforcement learning algorithm designed to efficiently and rapidly train robotic agents for goal-oriented manipulation tasks and obstacle avoidance. The algorithm uses a modified replay buffer inspired by the Hindsight Experience Replay (HER) approach to artificially populate experience with successful trajectories, effectively addressing the problem of sparse reward scenarios and eliminating the need to manually collect expert demonstrations. The developed algorithm proposes a Transformer-based architecture to incorporate the context of previous states, allowing the agent to perform a deeper analysis and make decisions in a manner more akin to human learning. The effectiveness of the built-in replay buffer, which acts as an "internal demonstrator", is twofold: it accelerates learning and allows the algorithm to adapt to different tasks. Empirical data confirm the superiority of the algorithm by an average of 38.46% over other considered methods, and the most successful baseline by 28.21%, showing higher success rates and faster convergence in the point-reaching task. Since the control is performed through the robot's joints, the algorithm facilitates potential adaptation to a real robot system and construction of an obstacle avoidance task. Therefore, the algorithm has also been tested on tasks requiring following a complex dynamic trajectory and obstacle avoidance. The design of the algorithm ensures its applicability to a wide range of goal-oriented tasks, making it an easily integrated solution for real-world robotics applications.
Abstract:We introduce AttentionSwarm, a novel benchmark designed to evaluate safe and efficient swarm control across three challenging environments: a landing environment with obstacles, a competitive drone game setting, and a dynamic drone racing scenario. Central to our approach is the Attention Model Based Control Barrier Function (CBF) framework, which integrates attention mechanisms with safety-critical control theory to enable real-time collision avoidance and trajectory optimization. This framework dynamically prioritizes critical obstacles and agents in the swarms vicinity using attention weights, while CBFs formally guarantee safety by enforcing collision-free constraints. The safe attention net algorithm was developed and evaluated using a swarm of Crazyflie 2.1 micro quadrotors, which were tested indoors with the Vicon motion capture system to ensure precise localization and control. Experimental results show that our system achieves landing accuracy of 3.02 cm with a mean time of 23 s and collision-free landings in a dynamic landing environment, 100% and collision-free navigation in a drone game environment, and 95% and collision-free navigation for a dynamic multiagent drone racing environment, underscoring its effectiveness and robustness in real-world scenarios. This work offers a promising foundation for applications in dynamic environments where safety and fastness are paramount.