Abstract:As surgery embraces digital transformation--integrating sophisticated imaging, advanced algorithms, and robotics to support and automate complex sub-tasks--human judgment of system correctness remains a vital safeguard for patient safety. This shift introduces new "operator-type" roles tasked with verifying complex algorithmic outputs, particularly at critical junctures of the procedure, such as the intermediary check before drilling or implant placement. A prime example is 2D/3D registration, a key enabler of image-based surgical navigation that aligns intraoperative 2D images with preoperative 3D data. Although registration algorithms have advanced significantly, they occasionally yield inaccurate results. Because even small misalignments can lead to revision surgery or irreversible surgical errors, there is a critical need for robust quality assurance. Current visualization-based strategies alone have been found insufficient to enable humans to reliably detect 2D/3D registration misalignments. In response, we propose the first artificial intelligence (AI) framework trained specifically for 2D/3D registration quality verification, augmented by explainability features that clarify the model's decision-making. Our explainable AI (XAI) approach aims to enhance informed decision-making for human operators by providing a second opinion together with a rationale behind it. Through algorithm-centric and human-centered evaluations, we systematically compare four conditions: AI-only, human-only, human-AI, and human-XAI. Our findings reveal that while explainability features modestly improve user trust and willingness to override AI errors, they do not exceed the standalone AI in aggregate performance. Nevertheless, future work extending both the algorithmic design and the human-XAI collaboration elements holds promise for more robust quality assurance of 2D/3D registration.
Abstract:Conventional approaches to video segmentation are confined to predefined object categories and cannot identify out-of-vocabulary objects, let alone objects that are not identified explicitly but only referred to implicitly in complex text queries. This shortcoming limits the utility for video segmentation in complex and variable scenarios, where a closed set of object categories is difficult to define and where users may not know the exact object category that will appear in the video. Such scenarios can arise in operating room video analysis, where different health systems may use different workflows and instrumentation, requiring flexible solutions for video analysis. Reasoning segmentation (RS) now offers promise towards such a solution, enabling natural language text queries as interaction for identifying object to segment. However, existing video RS formulation assume that target objects remain contextually relevant throughout entire video sequences. This assumption is inadequate for real-world scenarios in which objects of interest appear, disappear or change relevance dynamically based on temporal context, such as surgical instruments that become relevant only during specific procedural phases or anatomical structures that gain importance at particular moments during surgery. Our first contribution is the introduction of temporally-constrained video reasoning segmentation, a novel task formulation that requires models to implicitly infer when target objects become contextually relevant based on text queries that incorporate temporal reasoning. Since manual annotation of temporally-constrained video RS datasets would be expensive and limit scalability, our second contribution is an innovative automated benchmark construction method. Finally, we present TCVideoRSBenchmark, a temporally-constrained video RS dataset containing 52 samples using the videos from the MVOR dataset.
Abstract:Reasoning Segmentation (RS) aims to delineate objects based on implicit text queries, the interpretation of which requires reasoning and knowledge integration. Unlike the traditional formulation of segmentation problems that relies on fixed semantic categories or explicit prompting, RS bridges the gap between visual perception and human-like reasoning capabilities, facilitating more intuitive human-AI interaction through natural language. Our work presents the first comprehensive survey of RS for image and video processing, examining 26 state-of-the-art methods together with a review of the corresponding evaluation metrics, as well as 29 datasets and benchmarks. We also explore existing applications of RS across diverse domains and identify their potential extensions. Finally, we identify current research gaps and highlight promising future directions.
Abstract:Visual reasoning, the capability to interpret visual input in response to implicit text query through multi-step reasoning, remains a challenge for deep learning models due to the lack of relevant benchmarks. Previous work in visual reasoning has primarily focused on reasoning segmentation, where models aim to segment objects based on implicit text queries. This paper introduces reasoning visual tasks (RVTs), a unified formulation that extends beyond traditional video reasoning segmentation to a diverse family of visual language reasoning problems, which can therefore accommodate multiple output formats including bounding boxes, natural language descriptions, and question-answer pairs. Correspondingly, we identify the limitations in current benchmark construction methods that rely solely on large language models (LLMs), which inadequately capture complex spatial-temporal relationships and multi-step reasoning chains in video due to their reliance on token representation, resulting in benchmarks with artificially limited reasoning complexity. To address this limitation, we propose a novel automated RVT benchmark construction pipeline that leverages digital twin (DT) representations as structured intermediaries between perception and the generation of implicit text queries. Based on this method, we construct RVTBench, a RVT benchmark containing 3,896 queries of over 1.2 million tokens across four types of RVT (segmentation, grounding, VQA and summary), three reasoning categories (semantic, spatial, and temporal), and four increasing difficulty levels, derived from 200 video sequences. Finally, we propose RVTagent, an agent framework for RVT that allows for zero-shot generalization across various types of RVT without task-specific fine-tuning.
Abstract:Current foundation models (FMs) rely on token representations that directly fragment continuous real-world multimodal data into discrete tokens. They limit FMs to learning real-world knowledge and relationships purely through statistical correlation rather than leveraging explicit domain knowledge. Consequently, current FMs struggle with maintaining semantic coherence across modalities, capturing fine-grained spatial-temporal dynamics, and performing causal reasoning. These limitations cannot be overcome by simply scaling up model size or expanding datasets. This position paper argues that the machine learning community should consider digital twin (DT) representations, which are outcome-driven digital representations that serve as building blocks for creating virtual replicas of physical processes, as an alternative to the token representation for building FMs. Finally, we discuss how DT representations can address these challenges by providing physically grounded representations that explicitly encode domain knowledge and preserve the continuous nature of real-world processes.
Abstract:Purpose: The operating room (OR) is a complex environment where optimizing workflows is critical to reduce costs and improve patient outcomes. The use of computer vision approaches for the automatic recognition of perioperative events enables identification of bottlenecks for OR optimization. However, privacy concerns limit the use of computer vision for automated event detection from OR videos, which makes privacy-preserving approaches needed for OR workflow analysis. Methods: We propose a two-stage pipeline for privacy-preserving OR video analysis and event detection. In the first stage, we leverage vision foundation models for depth estimation and semantic segmentation to generate de-identified Digital Twins (DT) of the OR from conventional RGB videos. In the second stage, we employ the SafeOR model, a fused two-stream approach that processes segmentation masks and depth maps for OR event detection. We evaluate this method on an internal dataset of 38 simulated surgical trials with five event classes. Results: Our results indicate that this DT-based approach to the OR event detection model achieves performance on par and sometimes even better than raw RGB video-based models on detecting OR events. Conclusion: DTs enable privacy-preserving OR workflow analysis, facilitating the sharing of de-identified data across institutions and they can potentially enhance model generalizability by mitigating domain-specific appearance differences.
Abstract:The segmentation of pelvic fracture fragments in CT and X-ray images is crucial for trauma diagnosis, surgical planning, and intraoperative guidance. However, accurately and efficiently delineating the bone fragments remains a significant challenge due to complex anatomy and imaging limitations. The PENGWIN challenge, organized as a MICCAI 2024 satellite event, aimed to advance automated fracture segmentation by benchmarking state-of-the-art algorithms on these complex tasks. A diverse dataset of 150 CT scans was collected from multiple clinical centers, and a large set of simulated X-ray images was generated using the DeepDRR method. Final submissions from 16 teams worldwide were evaluated under a rigorous multi-metric testing scheme. The top-performing CT algorithm achieved an average fragment-wise intersection over union (IoU) of 0.930, demonstrating satisfactory accuracy. However, in the X-ray task, the best algorithm attained an IoU of 0.774, highlighting the greater challenges posed by overlapping anatomical structures. Beyond the quantitative evaluation, the challenge revealed methodological diversity in algorithm design. Variations in instance representation, such as primary-secondary classification versus boundary-core separation, led to differing segmentation strategies. Despite promising results, the challenge also exposed inherent uncertainties in fragment definition, particularly in cases of incomplete fractures. These findings suggest that interactive segmentation approaches, integrating human decision-making with task-relevant information, may be essential for improving model reliability and clinical applicability.
Abstract:Reasoning segmentation (RS) aims to identify and segment objects of interest based on implicit text queries. As such, RS is a catalyst for embodied AI agents, enabling them to interpret high-level commands without requiring explicit step-by-step guidance. However, current RS approaches rely heavily on the visual perception capabilities of multimodal large language models (LLMs), leading to several major limitations. First, they struggle with queries that require multiple steps of reasoning or those that involve complex spatial/temporal relationships. Second, they necessitate LLM fine-tuning, which may require frequent updates to maintain compatibility with contemporary LLMs and may increase risks of catastrophic forgetting during fine-tuning. Finally, being primarily designed for static images or offline video processing, they scale poorly to online video data. To address these limitations, we propose an agent framework that disentangles perception and reasoning for online video RS without LLM fine-tuning. Our innovation is the introduction of a just-in-time digital twin concept, where -- given an implicit query -- a LLM plans the construction of a low-level scene representation from high-level video using specialist vision models. We refer to this approach to creating a digital twin as "just-in-time" because the LLM planner will anticipate the need for specific information and only request this limited subset instead of always evaluating every specialist model. The LLM then performs reasoning on this digital twin representation to identify target objects. To evaluate our approach, we introduce a new comprehensive video reasoning segmentation benchmark comprising 200 videos with 895 implicit text queries. The benchmark spans three reasoning categories (semantic, spatial, and temporal) with three different reasoning chain complexity.
Abstract:Analyzing operating room (OR) workflows to derive quantitative insights into OR efficiency is important for hospitals to maximize patient care and financial sustainability. Prior work on OR-level workflow analysis has relied on end-to-end deep neural networks. While these approaches work well in constrained settings, they are limited to the conditions specified at development time and do not offer the flexibility necessary to accommodate the OR workflow analysis needs of various OR scenarios (e.g., large academic center vs. rural provider) without data collection, annotation, and retraining. Reasoning segmentation (RS) based on foundation models offers this flexibility by enabling automated analysis of OR workflows from OR video feeds given only an implicit text query related to the objects of interest. Due to the reliance on large language model (LLM) fine-tuning, current RS approaches struggle with reasoning about semantic/spatial relationships and show limited generalization to OR video due to variations in visual characteristics and domain-specific terminology. To address these limitations, we first propose a novel digital twin (DT) representation that preserves both semantic and spatial relationships between the various OR components. Then, building on this foundation, we propose ORDiRS (Operating Room Digital twin representation for Reasoning Segmentation), an LLM-tuning-free RS framework that reformulates RS into a "reason-retrieval-synthesize" paradigm. Finally, we present ORDiRS-Agent, an LLM-based agent that decomposes OR workflow analysis queries into manageable RS sub-queries and generates responses by combining detailed textual explanations with supporting visual evidence from RS. Experimental results on both an in-house and a public OR dataset demonstrate that our ORDiRS achieves a cIoU improvement of 6.12%-9.74% compared to the existing state-of-the-arts.
Abstract:Data-driven AI is establishing itself at the center of evidence-based medicine. However, reports of shortcomings and unexpected behavior are growing due to AI's reliance on association-based learning. A major reason for this behavior: latent bias in machine learning datasets can be amplified during training and/or hidden during testing. We present a data modality-agnostic auditing framework for generating targeted hypotheses about sources of bias which we refer to as Generalized Attribute Utility and Detectability-Induced bias Testing (G-AUDIT) for datasets. Our method examines the relationship between task-level annotations and data properties including protected attributes (e.g., race, age, sex) and environment and acquisition characteristics (e.g., clinical site, imaging protocols). G-AUDIT automatically quantifies the extent to which the observed data attributes may enable shortcut learning, or in the case of testing data, hide predictions made based on spurious associations. We demonstrate the broad applicability and value of our method by analyzing large-scale medical datasets for three distinct modalities and learning tasks: skin lesion classification in images, stigmatizing language classification in Electronic Health Records (EHR), and mortality prediction for ICU tabular data. In each setting, G-AUDIT successfully identifies subtle biases commonly overlooked by traditional qualitative methods that focus primarily on social and ethical objectives, underscoring its practical value in exposing dataset-level risks and supporting the downstream development of reliable AI systems. Our method paves the way for achieving deeper understanding of machine learning datasets throughout the AI development life-cycle from initial prototyping all the way to regulation, and creates opportunities to reduce model bias, enabling safer and more trustworthy AI systems.