Abstract:We present GLM-4.5, an open-source Mixture-of-Experts (MoE) large language model with 355B total parameters and 32B activated parameters, featuring a hybrid reasoning method that supports both thinking and direct response modes. Through multi-stage training on 23T tokens and comprehensive post-training with expert model iteration and reinforcement learning, GLM-4.5 achieves strong performance across agentic, reasoning, and coding (ARC) tasks, scoring 70.1% on TAU-Bench, 91.0% on AIME 24, and 64.2% on SWE-bench Verified. With much fewer parameters than several competitors, GLM-4.5 ranks 3rd overall among all evaluated models and 2nd on agentic benchmarks. We release both GLM-4.5 (355B parameters) and a compact version, GLM-4.5-Air (106B parameters), to advance research in reasoning and agentic AI systems. Code, models, and more information are available at https://github.com/zai-org/GLM-4.5.
Abstract:With the rapid advancement of Generative AI technology, Multimodal Large Language Models(MLLMs) have the potential to act as AI software engineers capable of executing complex web application development. Considering that the model requires a confluence of multidimensional sub-capabilities to address the challenges of various development phases, constructing a multi-view evaluation framework is crucial for accurately guiding the enhancement of development efficiency. However, existing benchmarks usually fail to provide an assessment of sub-capabilities and focus solely on webpage generation outcomes. In this work, we draw inspiration from the principles of software engineering and further propose WebUIBench, a benchmark systematically designed to evaluate MLLMs in four key areas: WebUI Perception, HTML Programming,WebUI-HTML Understanding, and WebUI-to-Code. WebUIBench comprises 21K high-quality question-answer pairs derived from over 0.7K real-world websites. The extensive evaluation of 29 mainstream MLLMs uncovers the skill characteristics and various weakness that models encountered during the development process.
Abstract:In order to solve the problem of insufficient generation quality caused by traditional patent text abstract generation models only originating from patent specifications, the problem of new terminology OOV caused by rapid patent updates, and the problem of information redundancy caused by insufficient consideration of the high professionalism, accuracy, and uniqueness of patent texts, we proposes a patent text abstract generation model (MSEA) based on a master-slave encoder architecture; Firstly, the MSEA model designs a master-slave encoder, which combines the instructions in the patent text with the claims as input, and fully explores the characteristics and details between the two through the master-slave encoder; Then, the model enhances the consideration of new technical terms in the input sequence based on the pointer network, and further enhances the correlation with the input text by re weighing the "remembered" and "for-gotten" parts of the input sequence from the encoder; Finally, an enhanced repetition suppression mechanism for patent text was introduced to ensure accurate and non redundant abstracts generated. On a publicly available patent text dataset, compared to the state-of-the-art model, Improved Multi-Head Attention Mechanism (IMHAM), the MSEA model achieves an improvement of 0.006, 0.005, and 0.005 in Rouge-1, Rouge-2, and Rouge-L scores, respectively. MSEA leverages the characteristics of patent texts to effectively enhance the quality of patent text generation, demonstrating its advancement and effectiveness in the experiments.