Alert button
Picture for Zhiting Hu

Zhiting Hu

Alert button

Cappy: Outperforming and Boosting Large Multi-Task LMs with a Small Scorer

Nov 12, 2023
Bowen Tan, Yun Zhu, Lijuan Liu, Eric Xing, Zhiting Hu, Jindong Chen

Large language models (LLMs) such as T0, FLAN, and OPT-IML, excel in multi-tasking under a unified instruction-following paradigm, where they also exhibit remarkable generalization abilities to unseen tasks. Despite their impressive performance, these LLMs, with sizes ranging from several billion to hundreds of billions of parameters, demand substantial computational resources, making their training and inference expensive and inefficient. Furthermore, adapting these models to downstream applications, particularly complex tasks, is often unfeasible due to the extensive hardware requirements for finetuning, even when utilizing parameter-efficient approaches such as prompt tuning. Additionally, the most powerful multi-task LLMs, such as OPT-IML-175B and FLAN-PaLM-540B, are not publicly accessible, severely limiting their customization potential. To address these challenges, we introduce a pretrained small scorer, Cappy, designed to enhance the performance and efficiency of multi-task LLMs. With merely 360 million parameters, Cappy functions either independently on classification tasks or serve as an auxiliary component for LLMs, boosting their performance. Moreover, Cappy enables efficiently integrating downstream supervision without requiring LLM finetuning nor the access to their parameters. Our experiments demonstrate that, when working independently on 11 language understanding tasks from PromptSource, Cappy outperforms LLMs that are several orders of magnitude larger. Besides, on 45 complex tasks from BIG-Bench, Cappy boosts the performance of the advanced multi-task LLM, FLAN-T5, by a large margin. Furthermore, Cappy is flexible to cooperate with other LLM adaptations, including finetuning and in-context learning, offering additional performance enhancement.

* In proceedings of NeurIPS 2023; Code and model available at https://github.com/tanyuqian/cappy and https://huggingface.co/btan2/cappy-large, respectively 
Viaarxiv icon

PromptAgent: Strategic Planning with Language Models Enables Expert-level Prompt Optimization

Oct 25, 2023
Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P. Xing, Zhiting Hu

Highly effective, task-specific prompts are often heavily engineered by experts to integrate detailed instructions and domain insights based on a deep understanding of both instincts of large language models (LLMs) and the intricacies of the target task. However, automating the generation of such expert-level prompts remains elusive. Existing prompt optimization methods tend to overlook the depth of domain knowledge and struggle to efficiently explore the vast space of expert-level prompts. Addressing this, we present PromptAgent, an optimization method that autonomously crafts prompts equivalent in quality to those handcrafted by experts. At its core, PromptAgent views prompt optimization as a strategic planning problem and employs a principled planning algorithm, rooted in Monte Carlo tree search, to strategically navigate the expert-level prompt space. Inspired by human-like trial-and-error exploration, PromptAgent induces precise expert-level insights and in-depth instructions by reflecting on model errors and generating constructive error feedback. Such a novel framework allows the agent to iteratively examine intermediate prompts (states), refine them based on error feedbacks (actions), simulate future rewards, and search for high-reward paths leading to expert prompts. We apply PromptAgent to 12 tasks spanning three practical domains: BIG-Bench Hard (BBH), as well as domain-specific and general NLP tasks, showing it significantly outperforms strong Chain-of-Thought and recent prompt optimization baselines. Extensive analyses emphasize its capability to craft expert-level, detailed, and domain-insightful prompts with great efficiency and generalizability.

* 34 pages, 10 figures 
Viaarxiv icon

Redco: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs

Oct 25, 2023
Bowen Tan, Yun Zhu, Lijuan Liu, Hongyi Wang, Yonghao Zhuang, Jindong Chen, Eric Xing, Zhiting Hu

Figure 1 for Redco: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs
Figure 2 for Redco: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs
Figure 3 for Redco: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs
Figure 4 for Redco: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs

The recent progress of AI can be largely attributed to large language models (LLMs). However, their escalating memory requirements introduce challenges for machine learning (ML) researchers and engineers. Addressing this requires developers to partition a large model to distribute it across multiple GPUs or TPUs. This necessitates considerable coding and intricate configuration efforts with existing model parallel tools, such as Megatron-LM, DeepSpeed, and Alpa. These tools require users' expertise in machine learning systems (MLSys), creating a bottleneck in LLM development, particularly for developers without MLSys background. In this work, we present Redco, a lightweight and user-friendly tool crafted to automate distributed training and inference for LLMs, as well as to simplify ML pipeline development. The design of Redco emphasizes two key aspects. Firstly, to automate model parallism, our study identifies two straightforward rules to generate tensor parallel strategies for any given LLM. Integrating these rules into Redco facilitates effortless distributed LLM training and inference, eliminating the need of additional coding or complex configurations. We demonstrate the effectiveness by applying Redco on a set of LLM architectures, such as GPT-J, LLaMA, T5, and OPT, up to the size of 66B. Secondly, we propose a mechanism that allows for the customization of diverse ML pipelines through the definition of merely three functions, eliminating redundant and formulaic code like multi-host related processing. This mechanism proves adaptable across a spectrum of ML algorithms, from foundational language modeling to complex algorithms like meta-learning and reinforcement learning. Consequently, Redco implementations exhibit much fewer code lines compared to their official counterparts.

* Released under Apache License 2.0 at https://github.com/tanyuqian/redco 
Viaarxiv icon

Text Alignment Is An Efficient Unified Model for Massive NLP Tasks

Jul 06, 2023
Yuheng Zha, Yichi Yang, Ruichen Li, Zhiting Hu

Figure 1 for Text Alignment Is An Efficient Unified Model for Massive NLP Tasks
Figure 2 for Text Alignment Is An Efficient Unified Model for Massive NLP Tasks
Figure 3 for Text Alignment Is An Efficient Unified Model for Massive NLP Tasks
Figure 4 for Text Alignment Is An Efficient Unified Model for Massive NLP Tasks

Large language models (LLMs), typically designed as a function of next-word prediction, have excelled across extensive NLP tasks. Despite the generality, next-word prediction is often not an efficient formulation for many of the tasks, demanding an extreme scale of model parameters (10s or 100s of billions) and sometimes yielding suboptimal performance. In practice, it is often desirable to build more efficient models -- despite being less versatile, they still apply to a substantial subset of problems, delivering on par or even superior performance with much smaller model sizes. In this paper, we propose text alignment as an efficient unified model for a wide range of crucial tasks involving text entailment, similarity, question answering (and answerability), factual consistency, and so forth. Given a pair of texts, the model measures the degree of alignment between their information. We instantiate an alignment model (Align) through lightweight finetuning of RoBERTa (355M parameters) using 5.9M examples from 28 datasets. Despite its compact size, extensive experiments show the model's efficiency and strong performance: (1) On over 20 datasets of aforementioned diverse tasks, the model matches or surpasses FLAN-T5 models that have around 2x or 10x more parameters; the single unified model also outperforms task-specific models finetuned on individual datasets; (2) When applied to evaluate factual consistency of language generation on 23 datasets, our model improves over various baselines, including the much larger GPT-3.5 (ChatGPT) and sometimes even GPT-4; (3) The lightweight model can also serve as an add-on component for LLMs such as GPT-3.5 in question answering tasks, improving the average exact match (EM) score by 17.94 and F1 score by 15.05 through identifying unanswerable questions.

* 23 pages, 4 figures, 17 tables 
Viaarxiv icon

AlignScore: Evaluating Factual Consistency with a Unified Alignment Function

May 26, 2023
Yuheng Zha, Yichi Yang, Ruichen Li, Zhiting Hu

Figure 1 for AlignScore: Evaluating Factual Consistency with a Unified Alignment Function
Figure 2 for AlignScore: Evaluating Factual Consistency with a Unified Alignment Function
Figure 3 for AlignScore: Evaluating Factual Consistency with a Unified Alignment Function
Figure 4 for AlignScore: Evaluating Factual Consistency with a Unified Alignment Function

Many text generation applications require the generated text to be factually consistent with input information. Automatic evaluation of factual consistency is challenging. Previous work has developed various metrics that often depend on specific functions, such as natural language inference (NLI) or question answering (QA), trained on limited data. Those metrics thus can hardly assess diverse factual inconsistencies (e.g., contradictions, hallucinations) that occur in varying inputs/outputs (e.g., sentences, documents) from different tasks. In this paper, we propose AlignScore, a new holistic metric that applies to a variety of factual inconsistency scenarios as above. AlignScore is based on a general function of information alignment between two arbitrary text pieces. Crucially, we develop a unified training framework of the alignment function by integrating a large diversity of data sources, resulting in 4.7M training examples from 7 well-established tasks (NLI, QA, paraphrasing, fact verification, information retrieval, semantic similarity, and summarization). We conduct extensive experiments on large-scale benchmarks including 22 evaluation datasets, where 19 of the datasets were never seen in the alignment training. AlignScore achieves substantial improvement over a wide range of previous metrics. Moreover, AlignScore (355M parameters) matches or even outperforms metrics based on ChatGPT and GPT-4 that are orders of magnitude larger.

* 19 pages, 5 figures, ACL2023 
Viaarxiv icon

Reasoning with Language Model is Planning with World Model

May 24, 2023
Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, Zhiting Hu

Figure 1 for Reasoning with Language Model is Planning with World Model
Figure 2 for Reasoning with Language Model is Planning with World Model
Figure 3 for Reasoning with Language Model is Planning with World Model
Figure 4 for Reasoning with Language Model is Planning with World Model

Large language models (LLMs) have shown remarkable reasoning capabilities, especially when prompted to generate intermediate reasoning steps (e.g., Chain-of-Thought, CoT). However, LLMs can still struggle with problems that are easy for humans, such as generating action plans for executing tasks in a given environment, or performing complex math, logical, and commonsense reasoning. The deficiency stems from the key fact that LLMs lack an internal $\textit{world model}$ to predict the world $\textit{state}$ (e.g., environment status, intermediate variable values) and simulate long-term outcomes of actions. This prevents LLMs from performing deliberate planning akin to human brains, which involves exploring alternative reasoning paths, anticipating future states and rewards, and iteratively refining existing reasoning steps. To overcome the limitations, we propose a new LLM reasoning framework, $\underline{R}\textit{easoning vi}\underline{a} \underline{P}\textit{lanning}$ $\textbf{(RAP)}$. RAP repurposes the LLM as both a world model and a reasoning agent, and incorporates a principled planning algorithm (based on Monto Carlo Tree Search) for strategic exploration in the vast reasoning space. During reasoning, the LLM (as agent) incrementally builds a reasoning tree under the guidance of the LLM (as world model) and task-specific rewards, and obtains a high-reward reasoning path efficiently with a proper balance between exploration $\textit{vs.}$ exploitation. We apply RAP to a variety of challenging reasoning problems including plan generation, math reasoning, and logical inference. Empirical results on these tasks demonstrate the superiority of RAP over various strong baselines, including CoT and least-to-most prompting with self-consistency. RAP on LLAMA-33B surpasses CoT on GPT-4 with 33% relative improvement in a plan generation setting.

Viaarxiv icon

Language Models Meet World Models: Embodied Experiences Enhance Language Models

May 22, 2023
Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, Zhiting Hu

Figure 1 for Language Models Meet World Models: Embodied Experiences Enhance Language Models
Figure 2 for Language Models Meet World Models: Embodied Experiences Enhance Language Models
Figure 3 for Language Models Meet World Models: Embodied Experiences Enhance Language Models
Figure 4 for Language Models Meet World Models: Embodied Experiences Enhance Language Models

While large language models (LMs) have shown remarkable capabilities across numerous tasks, they often struggle with simple reasoning and planning in physical environments, such as understanding object permanence or planning household activities. The limitation arises from the fact that LMs are trained only on written text and miss essential embodied knowledge and skills. In this paper, we propose a new paradigm of enhancing LMs by finetuning them with world models, to gain diverse embodied knowledge while retaining their general language capabilities. Our approach deploys an embodied agent in a world model, particularly a simulator of the physical world (VirtualHome), and acquires a diverse set of embodied experiences through both goal-oriented planning and random exploration. These experiences are then used to finetune LMs to teach diverse abilities of reasoning and acting in the physical world, e.g., planning and completing goals, object permanence and tracking, etc. Moreover, it is desirable to preserve the generality of LMs during finetuning, which facilitates generalizing the embodied knowledge across tasks rather than being tied to specific simulations. We thus further introduce the classical elastic weight consolidation (EWC) for selective weight updates, combined with low-rank adapters (LoRA) for training efficiency. Extensive experiments show our approach substantially improves base LMs on 18 downstream tasks by 64.28% on average. In particular, the small LMs (1.3B and 6B) enhanced by our approach match or even outperform much larger LMs (e.g., ChatGPT).

Viaarxiv icon

ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings

May 19, 2023
Shibo Hao, Tianyang Liu, Zhen Wang, Zhiting Hu

Figure 1 for ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings
Figure 2 for ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings
Figure 3 for ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings
Figure 4 for ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings

Augmenting large language models (LLMs) with external tools has emerged as a promising approach to solving complex problems. However, traditional methods, which finetune LLMs with tool demonstration data, can be both costly and restricted to a predefined set of tools. Recent in-context learning paradigm alleviates these issues, but the limited context length only allows for a few shots of demonstrations, leading to suboptimal understandings of the tools. Moreover, when there are numerous tools to choose from, in-context learning could completely fail to work. In this paper, we propose an alternative approach, $\textbf{ToolkenGPT}$, which combines the benefits of both sides. Our approach represents each $\underline{tool}$ as a to$\underline{ken}$ ($\textit{toolken}$) and learns an embedding for it, enabling tool calls in the same way as generating a regular word token. Once a toolken is triggered, the LLM is prompted to complete arguments for the tool to execute. ToolkenGPT offers the flexibility to plug in an arbitrary number of tools by expanding the set of toolkens on the fly. In addition, it improves tool use by allowing extensive demonstration data for learning the toolken embeddings. In diverse domains, including numerical reasoning, knowledge-based question answering, and embodied plan generation, our approach effectively augments LLMs with tools and substantially outperforms various latest baselines. ToolkenGPT demonstrates the promising ability to use relevant tools from a large tool set in complex scenarios.

Viaarxiv icon

ASDOT: Any-Shot Data-to-Text Generation with Pretrained Language Models

Oct 11, 2022
Jiannan Xiang, Zhengzhong Liu, Yucheng Zhou, Eric P. Xing, Zhiting Hu

Figure 1 for ASDOT: Any-Shot Data-to-Text Generation with Pretrained Language Models
Figure 2 for ASDOT: Any-Shot Data-to-Text Generation with Pretrained Language Models
Figure 3 for ASDOT: Any-Shot Data-to-Text Generation with Pretrained Language Models
Figure 4 for ASDOT: Any-Shot Data-to-Text Generation with Pretrained Language Models

Data-to-text generation is challenging due to the great variety of the input data in terms of domains (e.g., finance vs sports) or schemata (e.g., diverse predicates). Recent end-to-end neural methods thus require substantial training examples to learn to disambiguate and describe the data. Yet, real-world data-to-text problems often suffer from various data-scarce issues: one may have access to only a handful of or no training examples, and/or have to rely on examples in a different domain or schema. To fill this gap, we propose Any-Shot Data-to-Text (ASDOT), a new approach flexibly applicable to diverse settings by making efficient use of any given (or no) examples. ASDOT consists of two steps, data disambiguation and sentence fusion, both of which are amenable to be solved with off-the-shelf pretrained language models (LMs) with optional finetuning. In the data disambiguation stage, we employ the prompted GPT-3 model to understand possibly ambiguous triples from the input data and convert each into a short sentence with reduced ambiguity. The sentence fusion stage then uses an LM like T5 to fuse all the resulting sentences into a coherent paragraph as the final description. We evaluate extensively on various datasets in different scenarios, including the zero-/few-/full-shot settings, and generalization to unseen predicates and out-of-domain data. Experimental results show that ASDOT consistently achieves significant improvement over baselines, e.g., a 30.81 BLEU gain on the DART dataset under the zero-shot setting.

* Findings of EMNLP 2022 
Viaarxiv icon

Composable Text Control Operations in Latent Space with Ordinary Differential Equations

Aug 01, 2022
Guangyi Liu, Zeyu Feng, Yuan Gao, Zichao Yang, Xiaodan Liang, Junwei Bao, Xiaodong He, Shuguang Cui, Zhen Li, Zhiting Hu

Figure 1 for Composable Text Control Operations in Latent Space with Ordinary Differential Equations
Figure 2 for Composable Text Control Operations in Latent Space with Ordinary Differential Equations
Figure 3 for Composable Text Control Operations in Latent Space with Ordinary Differential Equations
Figure 4 for Composable Text Control Operations in Latent Space with Ordinary Differential Equations

Real-world text applications often involve composing a wide range of text control operations, such as editing the text w.r.t. an attribute, manipulating keywords and structure, and generating new text of desired properties. Prior work typically learns/finetunes a language model (LM) to perform individual or specific subsets of operations. Recent research has studied combining operations in a plug-and-play manner, often with costly search or optimization in the complex sequence space. This paper proposes a new efficient approach for composable text operations in the compact latent space of text. The low-dimensionality and differentiability of the text latent vector allow us to develop an efficient sampler based on ordinary differential equations (ODEs) given arbitrary plug-in operators (e.g., attribute classifiers). By connecting pretrained LMs (e.g., GPT2) to the latent space through efficient adaption, we then decode the sampled vectors into desired text sequences. The flexible approach permits diverse control operators (sentiment, tense, formality, keywords, etc.) acquired using any relevant data from different domains. Experiments show that composing those operators within our approach manages to generate or edit high-quality text, substantially improving over previous methods in terms of generation quality and efficiency.

* 20 Pages, Code: https://github.com/guangyliu/LatentOps 
Viaarxiv icon