Abstract:Spiking Neural Networks (SNNs) can achieve competitive performance by converting already existing well-trained Artificial Neural Networks (ANNs), avoiding further costly training. This property is particularly attractive in Reinforcement Learning (RL), where training through environment interaction is expensive and potentially unsafe. However, existing conversion methods perform poorly in continuous control, where suitable baselines are largely absent. We identify error amplification as the key cause: small action approximation errors become temporally correlated across decision steps, inducing cumulative state distribution shift and severe performance degradation. To address this issue, we propose Cross-Step Residual Potential Initialization (CRPI), a lightweight training-free mechanism that carries over residual membrane potentials across decision steps to suppress temporally correlated errors. Experiments on continuous control benchmarks with both vector and visual observations demonstrate that CRPI can be integrated into existing conversion pipelines and substantially recovers lost performance. Our results highlight continuous control as a critical and challenging benchmark for ANN-to-SNN conversion, where small errors can be strongly amplified and impact performance.
Abstract:Spiking Neural Networks (SNNs) are highly energy-efficient due to event-driven, sparse computation, but their training is challenged by spike non-differentiability and trade-offs among performance, efficiency, and biological plausibility. Crucially, mainstream SNNs ignore predictive coding, a core cortical mechanism where the brain predicts inputs and encodes errors for efficient perception. Inspired by this, we propose a self-prediction enhanced spiking neuron method that generates an internal prediction current from its input-output history to modulate membrane potential. This design offers dual advantages, it creates a continuous gradient path that alleviates vanishing gradients and boosts training stability and accuracy, while also aligning with biological principles, which resembles distal dendritic modulation and error-driven synaptic plasticity. Experiments show consistent performance gains across diverse architectures, neuron types, time steps, and tasks demonstrating broad applicability for enhancing SNNs.
Abstract:Object detection in autonomous driving suffers from motion blur and saturation under fast motion and extreme lighting. Spike cameras, offer microsecond latency and ultra high dynamic range for object detection by using per pixel asynchronous integrate and fire. However, their sparse, discrete output cannot be processed by standard image-based detectors, posing a critical challenge for end to end spike stream detection. We propose EASD, an end to end spike camera detector with a dual branch design: a Temporal Based Texture plus Feature Fusion branch for global cross slice semantics, and an Entropy Selective Attention branch for object centric details. To close the data gap, we introduce DSEC Spike, the first driving oriented simulated spike detection benchmark.




Abstract:Vision-Language-Action (VLA) models enable robots to understand and perform complex tasks from multimodal input. Although recent work explores using reinforcement learning (RL) to automate the laborious data collection process in scaling supervised fine-tuning (SFT), applying large-scale RL to flow-based VLAs (e.g., $\pi_0$, $\pi_{0.5}$) remains challenging due to intractable action log-likelihoods from iterative denoising. We address this challenge with $\pi_{\text{RL}}$, an open-source framework for training flow-based VLAs in parallel simulation. $\pi_{\text{RL}}$ implements two RL algorithms: (1) {Flow-Noise} models the denoising process as a discrete-time MDP with a learnable noise network for exact log-likelihood computation. (2) {Flow-SDE} integrates denoising with agent-environment interaction, formulating a two-layer MDP that employs ODE-to-SDE conversion for efficient RL exploration. We evaluate $\pi_{\text{RL}}$ on LIBERO and ManiSkill benchmarks. On LIBERO, $\pi_{\text{RL}}$ boosts few-shot SFT models $\pi_0$ and $\pi_{0.5}$ from 57.6% to 97.6% and from 77.1% to 98.3%, respectively. In ManiSkill, we train $\pi_{\text{RL}}$ in 320 parallel environments, improving $\pi_0$ from 41.6% to 85.7% and $\pi_{0.5}$ from 40.0% to 84.8% across 4352 pick-and-place tasks, demonstrating scalable multitask RL under heterogeneous simulation. Overall, $\pi_{\text{RL}}$ achieves significant performance gains and stronger generalization over SFT-models, validating the effectiveness of online RL for flow-based VLAs.




Abstract:Spiking Neural Networks (SNNs) offer low-latency and energy-efficient decision making through neuromorphic hardware, making them compelling for Reinforcement Learning (RL) in resource-constrained edge devices. Recent studies in this field directly replace Artificial Neural Networks (ANNs) by SNNs in existing RL frameworks, overlooking whether the RL algorithm is suitable for SNNs. However, most RL algorithms in continuous control are designed tailored to ANNs, including the target network soft updates mechanism, which conflict with the discrete, non-differentiable dynamics of SNN spikes. We identify that this mismatch destabilizes SNN training in continuous control tasks. To bridge this gap between discrete SNN and continuous control, we propose a novel proxy target framework. The continuous and differentiable dynamics of the proxy target enable smooth updates, bypassing the incompatibility of SNN spikes, stabilizing the RL algorithms. Since the proxy network operates only during training, the SNN retains its energy efficiency during deployment without inference overhead. Extensive experiments on continuous control benchmarks demonstrate that compared to vanilla SNNs, the proxy target framework enables SNNs to achieve up to 32% higher performance across different spiking neurons. Notably, we are the first to surpass ANN performance in continuous control with simple Leaky-Integrate-and-Fire (LIF) neurons. This work motivates a new class of SNN-friendly RL algorithms tailored to SNN's characteristics, paving the way for neuromorphic agents that combine high performance with low power consumption.




Abstract:Conventional frame-based cameras often struggle with stereo depth estimation in rapidly changing scenes. In contrast, bio-inspired spike cameras emit asynchronous events at microsecond-level resolution, providing an alternative sensing modality. However, existing methods lack specialized stereo algorithms and benchmarks tailored to the spike data. To address this gap, we propose SpikeStereoNet, a brain-inspired framework and the first to estimate stereo depth directly from raw spike streams. The model fuses raw spike streams from two viewpoints and iteratively refines depth estimation through a recurrent spiking neural network (RSNN) update module. To benchmark our approach, we introduce a large-scale synthetic spike stream dataset and a real-world stereo spike dataset with dense depth annotations. SpikeStereoNet outperforms existing methods on both datasets by leveraging spike streams' ability to capture subtle edges and intensity shifts in challenging regions such as textureless surfaces and extreme lighting conditions. Furthermore, our framework exhibits strong data efficiency, maintaining high accuracy even with substantially reduced training data. The source code and datasets will be publicly available.
Abstract:Spike cameras offer unique sensing capabilities but their sparse, asynchronous output challenges semantic understanding, especially for Spike Video-Language Alignment (Spike-VLA) where models like CLIP underperform due to modality mismatch. We introduce SPKLIP, the first architecture specifically for Spike-VLA. SPKLIP employs a hierarchical spike feature extractor that adaptively models multi-scale temporal dynamics in event streams, and uses spike-text contrastive learning to directly align spike video with language, enabling effective few-shot learning. A full-spiking visual encoder variant, integrating SNN components into our pipeline, demonstrates enhanced energy efficiency. Experiments show state-of-the-art performance on benchmark spike datasets and strong few-shot generalization on a newly contributed real-world dataset. SPKLIP's energy efficiency highlights its potential for neuromorphic deployment, advancing event-based multimodal research. The source code and dataset are available at [link removed for anonymity].
Abstract:Existing saliency detection methods struggle in real-world scenarios due to motion blur and occlusions. In contrast, spike cameras, with their high temporal resolution, significantly enhance visual saliency maps. However, the composite noise inherent to spike camera imaging introduces discontinuities in saliency detection. Low-quality samples further distort model predictions, leading to saliency bias. To address these challenges, we propose Spike-navigated Optimal TrAnsport Saliency Region Detection (SOTA), a framework that leverages the strengths of spike cameras while mitigating biases in both spatial and temporal dimensions. Our method introduces Spike-based Micro-debias (SM) to capture subtle frame-to-frame variations and preserve critical details, even under minimal scene or lighting changes. Additionally, Spike-based Global-debias (SG) refines predictions by reducing inconsistencies across diverse conditions. Extensive experiments on real and synthetic datasets demonstrate that SOTA outperforms existing methods by eliminating composite noise bias. Our code and dataset will be released at https://github.com/lwxfight/sota.




Abstract:The need for accurate and non-intrusive flow measurement methods has led to the widespread adoption of Particle Image Velocimetry (PIV), a powerful diagnostic tool in fluid motion estimation. This study investigates the tremendous potential of spike cameras (a type of ultra-high-speed, high-dynamic-range camera) in PIV. We propose a deep learning framework, Spike Imaging Velocimetry (SIV), designed specifically for highly turbulent and intricate flow fields. To aggregate motion features from the spike stream while minimizing information loss, we incorporate a Detail-Preserving Hierarchical Transform (DPHT) module. Additionally, we introduce a Graph Encoder (GE) to extract contextual features from highly complex fluid flows. Furthermore, we present a spike-based PIV dataset, Particle Scenes with Spike and Displacement (PSSD), which provides labeled data for three challenging fluid dynamics scenarios. Our proposed method achieves superior performance compared to existing baseline methods on PSSD. The datasets and our implementation of SIV are open-sourced in the supplementary materials.
Abstract:Event cameras, an innovative bio-inspired sensor, differ from traditional cameras by sensing changes in intensity rather than directly perceiving intensity and recording these variations as a continuous stream of "events". The intensity reconstruction from these sparse events has long been a challenging problem. Previous approaches mainly focused on transforming motion-induced events into videos or achieving intensity imaging for static scenes by integrating modulation devices at the event camera acquisition end. In this paper, for the first time, we achieve event-to-intensity conversion using a static event camera for both static and dynamic scenes in fluorescence microscopy. Unlike conventional methods that primarily rely on event integration, the proposed Inter-event Interval Microscopy (IEIM) quantifies the time interval between consecutive events at each pixel. With a fixed threshold in the event camera, the time interval can precisely represent the intensity. At the hardware level, the proposed IEIM integrates a pulse light modulation device within a microscope equipped with an event camera, termed Pulse Modulation-based Event-driven Fluorescence Microscopy. Additionally, we have collected IEIMat dataset under various scenes including high dynamic range and high-speed scenarios. Experimental results on the IEIMat dataset demonstrate that the proposed IEIM achieves superior spatial and temporal resolution, as well as a higher dynamic range, with lower bandwidth compared to other methods. The code and the IEIMat dataset will be made publicly available.