Abstract:Large Vision-Language Models (LVLMs) have exhibited remarkable progress. However, deficiencies remain compared to human intelligence, such as hallucination and shallow pattern matching. In this work, we aim to evaluate a fundamental yet underexplored intelligence: association, a cornerstone of human cognition for creative thinking and knowledge integration. Current benchmarks, often limited to closed-ended tasks, fail to capture the complexity of open-ended association reasoning vital for real-world applications. To address this, we present MM-OPERA, a systematic benchmark with 11,497 instances across two open-ended tasks: Remote-Item Association (RIA) and In-Context Association (ICA), aligning association intelligence evaluation with human psychometric principles. It challenges LVLMs to resemble the spirit of divergent thinking and convergent associative reasoning through free-form responses and explicit reasoning paths. We deploy tailored LLM-as-a-Judge strategies to evaluate open-ended outputs, applying process-reward-informed judgment to dissect reasoning with precision. Extensive empirical studies on state-of-the-art LVLMs, including sensitivity analysis of task instances, validity analysis of LLM-as-a-Judge strategies, and diversity analysis across abilities, domains, languages, cultures, etc., provide a comprehensive and nuanced understanding of the limitations of current LVLMs in associative reasoning, paving the way for more human-like and general-purpose AI. The dataset and code are available at https://github.com/MM-OPERA-Bench/MM-OPERA.




Abstract:Characterizing urban environments with broad coverages and high precision is more important than ever for achieving the UN's Sustainable Development Goals (SDGs) as half of the world's populations are living in cities. Urban building height as a fundamental 3D urban structural feature has far-reaching applications. However, so far, producing readily available datasets of recent urban building heights with fine spatial resolutions and global coverages remains a challenging task. Here, we provide an up-to-date global product of urban building heights based on a fine grid size of 150 m around 2020 by combining the spaceborne lidar instrument of GEDI and multi-sourced data including remotely sensed images (i.e., Landsat-8, Sentinel-2, and Sentinel-1) and topographic data. Our results revealed that the estimated method of building height samples based on the GEDI data was effective with 0.78 of Pearson's r and 3.67 m of RMSE in comparison to the reference data. The mapping product also demonstrated good performance as indicated by its strong correlation with the reference data (i.e., Pearson's r = 0.71, RMSE = 4.60 m). Compared with the currently existing products, our global urban building height map holds the ability to provide a higher spatial resolution (i.e., 150 m) with a great level of inherent details about the spatial heterogeneity and flexibility of updating using the GEDI samples as inputs. This work will boost future urban studies across many fields including climate, environmental, ecological, and social sciences.