Abstract:In the era of information explosion, numerous items emerge every day, especially in feed scenarios. Due to the limited system display slots and user browsing attention, various recommendation systems are designed not only to satisfy users' personalized information needs but also to allocate items' exposure. However, recent recommendation studies mainly focus on modeling user preferences to present satisfying results and maximize user interactions, while paying little attention to developing item-side fair exposure mechanisms for rational information delivery. This may lead to serious resource allocation problems on the item side, such as the Snowball Effect. Furthermore, unfair exposure mechanisms may hurt recommendation performance. In this paper, we call for a shift of attention from modeling user preferences to developing fair exposure mechanisms for items. We first conduct empirical analyses of feed scenarios to explore exposure problems between items with distinct uploaded times. This points out that unfair exposure caused by the time factor may be the major cause of the Snowball Effect. Then, we propose to explicitly model item-level customized timeliness distribution, Global Residual Value (GRV), for fair resource allocation. This GRV module is introduced into recommendations with the designed Timeliness-aware Fair Recommendation Framework (TaFR). Extensive experiments on two datasets demonstrate that TaFR achieves consistent improvements with various backbone recommendation models. By modeling item-side customized Global Residual Value, we achieve a fairer distribution of resources and, at the same time, improve recommendation performance.
Abstract:Offline reinforcement learning (RL), a technology that offline learns a policy from logged data without the need to interact with online environments, has become a favorable choice in decision-making processes like interactive recommendation. Offline RL faces the value overestimation problem. To address it, existing methods employ conservatism, e.g., by constraining the learned policy to be close to behavior policies or punishing the rarely visited state-action pairs. However, when applying such offline RL to recommendation, it will cause a severe Matthew effect, i.e., the rich get richer and the poor get poorer, by promoting popular items or categories while suppressing the less popular ones. It is a notorious issue that needs to be addressed in practical recommender systems. In this paper, we aim to alleviate the Matthew effect in offline RL-based recommendation. Through theoretical analyses, we find that the conservatism of existing methods fails in pursuing users' long-term satisfaction. It inspires us to add a penalty term to relax the pessimism on states with high entropy of the logging policy and indirectly penalizes actions leading to less diverse states. This leads to the main technical contribution of the work: Debiased model-based Offline RL (DORL) method. Experiments show that DORL not only captures user interests well but also alleviates the Matthew effect. The implementation is available via https://github.com/chongminggao/DORL-codes.
Abstract:Endometriosis is a common chronic gynecological disorder that has many characteristics, including the pouch of Douglas (POD) obliteration, which can be diagnosed using Transvaginal gynecological ultrasound (TVUS) scans and magnetic resonance imaging (MRI). TVUS and MRI are complementary non-invasive endometriosis diagnosis imaging techniques, but patients are usually not scanned using both modalities and, it is generally more challenging to detect POD obliteration from MRI than TVUS. To mitigate this classification imbalance, we propose in this paper a knowledge distillation training algorithm to improve the POD obliteration detection from MRI by leveraging the detection results from unpaired TVUS data. More specifically, our algorithm pre-trains a teacher model to detect POD obliteration from TVUS data, and it also pre-trains a student model with 3D masked auto-encoder using a large amount of unlabelled pelvic 3D MRI volumes. Next, we distill the knowledge from the teacher TVUS POD obliteration detector to train the student MRI model by minimizing a regression loss that approximates the output of the student to the teacher using unpaired TVUS and MRI data. Experimental results on our endometriosis dataset containing TVUS and MRI data demonstrate the effectiveness of our method to improve the POD detection accuracy from MRI.
Abstract:The event streams generated by dynamic vision sensors (DVS) are sparse and non-uniform in the spatial domain, while still dense and redundant in the temporal domain. Although spiking neural network (SNN), the event-driven neuromorphic model, has the potential to extract spatio-temporal features from the event streams, it is not effective and efficient. Based on the above, we propose an events sparsification spiking framework dubbed as Razor SNN, pruning pointless event frames progressively. Concretely, we extend the dynamic mechanism based on the global temporal embeddings, reconstruct the features, and emphasize the events effect adaptively at the training stage. During the inference stage, eliminate fruitless frames hierarchically according to a binary mask generated by the trained temporal embeddings. Comprehensive experiments demonstrate that our Razor SNN achieves competitive performance consistently on four events-based benchmarks: DVS 128 Gesture, N-Caltech 101, CIFAR10-DVS and SHD.
Abstract:Geometric regularity, which leverages data symmetry, has been successfully incorporated into deep learning architectures such as CNNs, RNNs, GNNs, and Transformers. While this concept has been widely applied in robotics to address the curse of dimensionality when learning from high-dimensional data, the inherent reflectional and rotational symmetry of robot structures has not been adequately explored. Drawing inspiration from cooperative multi-agent reinforcement learning, we introduce novel network structures for deep learning algorithms that explicitly capture this geometric regularity. Moreover, we investigate the relationship between the geometric prior and the concept of Parameter Sharing in multi-agent reinforcement learning. Through experiments conducted on various challenging continuous control tasks, we demonstrate the significant potential of the proposed geometric regularity in enhancing robot learning capabilities.
Abstract:Video panoptic segmentation is a challenging task that serves as the cornerstone of numerous downstream applications, including video editing and autonomous driving. We believe that the decoupling strategy proposed by DVIS enables more effective utilization of temporal information for both "thing" and "stuff" objects. In this report, we successfully validated the effectiveness of the decoupling strategy in video panoptic segmentation. Finally, our method achieved a VPQ score of 51.4 and 53.7 in the development and test phases, respectively, and ultimately ranked 1st in the VPS track of the 2nd PVUW Challenge. The code is available at https://github.com/zhang-tao-whu/DVIS
Abstract:Video instance segmentation (VIS) is a critical task with diverse applications, including autonomous driving and video editing. Existing methods often underperform on complex and long videos in real world, primarily due to two factors. Firstly, offline methods are limited by the tightly-coupled modeling paradigm, which treats all frames equally and disregards the interdependencies between adjacent frames. Consequently, this leads to the introduction of excessive noise during long-term temporal alignment. Secondly, online methods suffer from inadequate utilization of temporal information. To tackle these challenges, we propose a decoupling strategy for VIS by dividing it into three independent sub-tasks: segmentation, tracking, and refinement. The efficacy of the decoupling strategy relies on two crucial elements: 1) attaining precise long-term alignment outcomes via frame-by-frame association during tracking, and 2) the effective utilization of temporal information predicated on the aforementioned accurate alignment outcomes during refinement. We introduce a novel referring tracker and temporal refiner to construct the \textbf{D}ecoupled \textbf{VIS} framework (\textbf{DVIS}). DVIS achieves new SOTA performance in both VIS and VPS, surpassing the current SOTA methods by 7.3 AP and 9.6 VPQ on the OVIS and VIPSeg datasets, which are the most challenging and realistic benchmarks. Moreover, thanks to the decoupling strategy, the referring tracker and temporal refiner are super light-weight (only 1.69\% of the segmenter FLOPs), allowing for efficient training and inference on a single GPU with 11G memory. The code is available at \href{https://github.com/zhang-tao-whu/DVIS}{https://github.com/zhang-tao-whu/DVIS}.
Abstract:The representation gap between teacher and student is an emerging topic in knowledge distillation (KD). To reduce the gap and improve the performance, current methods often resort to complicated training schemes, loss functions, and feature alignments, which are task-specific and feature-specific. In this paper, we state that the essence of these methods is to discard the noisy information and distill the valuable information in the feature, and propose a novel KD method dubbed DiffKD, to explicitly denoise and match features using diffusion models. Our approach is based on the observation that student features typically contain more noises than teacher features due to the smaller capacity of student model. To address this, we propose to denoise student features using a diffusion model trained by teacher features. This allows us to perform better distillation between the refined clean feature and teacher feature. Additionally, we introduce a light-weight diffusion model with a linear autoencoder to reduce the computation cost and an adpative noise matching module to improve the denoising performance. Extensive experiments demonstrate that DiffKD is effective across various types of features and achieves state-of-the-art performance consistently on image classification, object detection, and semantic segmentation tasks. Code will be available at https://github.com/hunto/DiffKD.
Abstract:This paper studies the open problem of conformalized entry prediction in a row/column-exchangeable matrix. The matrix setting presents novel and unique challenges, but there exists little work on this interesting topic. We meticulously define the problem, differentiate it from closely related problems, and rigorously delineate the boundary between achievable and impossible goals. We then propose two practical algorithms. The first method provides a fast emulation of the full conformal prediction, while the second method leverages the technique of algorithmic stability for acceleration. Both methods are computationally efficient and can effectively safeguard coverage validity in presence of arbitrary missing pattern. Further, we quantify the impact of missingness on prediction accuracy and establish fundamental limit results. Empirical evidence from synthetic and real-world data sets corroborates the superior performance of our proposed methods.
Abstract:Knowledge distillation is an effective paradigm for boosting the performance of pocket-size model, especially when multiple teacher models are available, the student would break the upper limit again. However, it is not economical to train diverse teacher models for the disposable distillation. In this paper, we introduce a new concept dubbed Avatars for distillation, which are the inference ensemble models derived from the teacher. Concretely, (1) For each iteration of distillation training, various Avatars are generated by a perturbation transformation. We validate that Avatars own higher upper limit of working capacity and teaching ability, aiding the student model in learning diverse and receptive knowledge perspectives from the teacher model. (2) During the distillation, we propose an uncertainty-aware factor from the variance of statistical differences between the vanilla teacher and Avatars, to adjust Avatars' contribution on knowledge transfer adaptively. Avatar Knowledge Distillation AKD is fundamentally different from existing methods and refines with the innovative view of unequal training. Comprehensive experiments demonstrate the effectiveness of our Avatars mechanism, which polishes up the state-of-the-art distillation methods for dense prediction without more extra computational cost. The AKD brings at most 0.7 AP gains on COCO 2017 for Object Detection and 1.83 mIoU gains on Cityscapes for Semantic Segmentation, respectively.