Multi-sensor modal fusion has demonstrated strong advantages in 3D object detection tasks. However, existing methods that fuse multi-modal features through a simple channel concatenation require transformation features into bird's eye view space and may lose the information on Z-axis thus leads to inferior performance. To this end, we propose FusionFormer, an end-to-end multi-modal fusion framework that leverages transformers to fuse multi-modal features and obtain fused BEV features. And based on the flexible adaptability of FusionFormer to the input modality representation, we propose a depth prediction branch that can be added to the framework to improve detection performance in camera-based detection tasks. In addition, we propose a plug-and-play temporal fusion module based on transformers that can fuse historical frame BEV features for more stable and reliable detection results. We evaluate our method on the nuScenes dataset and achieve 72.6% mAP and 75.1% NDS for 3D object detection tasks, outperforming state-of-the-art methods.
Crowd counting aims to learn the crowd density distributions and estimate the number of objects (e.g. persons) in images. The perspective effect, which significantly influences the distribution of data points, plays an important role in crowd counting. In this paper, we propose a novel perspective-aware approach called PANet to address the perspective problem. Based on the observation that the size of the objects varies greatly in one image due to the perspective effect, we propose the dynamic receptive fields (DRF) framework. The framework is able to adjust the receptive field by the dilated convolution parameters according to the input image, which helps the model to extract more discriminative features for each local region. Different from most previous works which use Gaussian kernels to generate the density map as the supervised information, we propose the self-distilling supervision (SDS) training method. The ground-truth density maps are refined from the first training stage and the perspective information is distilled to the model in the second stage. The experimental results on ShanghaiTech Part_A and Part_B, UCF_QNRF, and UCF_CC_50 datasets demonstrate that our proposed PANet outperforms the state-of-the-art methods by a large margin.
In this paper, we propose a novel face alignment method that trains deep convolutional network from coarse to fine. It divides given landmarks into principal subset and elaborate subset. We firstly keep a large weight for principal subset to make our network primarily predict their locations while slightly take elaborate subset into account. Next the weight of principal subset is gradually decreased until two subsets have equivalent weights. This process contributes to learn a good initial model and search the optimal model smoothly to avoid missing fairly good intermediate models in subsequent procedures. On the challenging COFW dataset [1], our method achieves 6.33% mean error with a reduction of 21.37% compared with the best previous result [2].