This paper proposes LLaFS, the first attempt to leverage large language models (LLMs) in few-shot segmentation. In contrast to the conventional few-shot segmentation methods that only rely on the limited and biased information from the annotated support images, LLaFS leverages the vast prior knowledge gained by LLM as an effective supplement and directly uses the LLM to segment images in a few-shot manner. To enable the text-based LLM to handle image-related tasks, we carefully design an input instruction that allows the LLM to produce segmentation results represented as polygons, and propose a region-attribute table to simulate the human visual mechanism and provide multi-modal guidance. We also synthesize pseudo samples and use curriculum learning for pretraining to augment data and achieve better optimization. LLaFS achieves state-of-the-art results on multiple datasets, showing the potential of using LLMs for few-shot computer vision tasks. Code will be available at https://github.com/lanyunzhu99/LLaFS.
Most existing ultra-high resolution (UHR) segmentation methods always struggle in the dilemma of balancing memory cost and local characterization accuracy, which are both taken into account in our proposed Guided Patch-Grouping Wavelet Transformer (GPWFormer) that achieves impressive performances. In this work, GPWFormer is a Transformer ($\mathcal{T}$)-CNN ($\mathcal{C}$) mutual leaning framework, where $\mathcal{T}$ takes the whole UHR image as input and harvests both local details and fine-grained long-range contextual dependencies, while $\mathcal{C}$ takes downsampled image as input for learning the category-wise deep context. For the sake of high inference speed and low computation complexity, $\mathcal{T}$ partitions the original UHR image into patches and groups them dynamically, then learns the low-level local details with the lightweight multi-head Wavelet Transformer (WFormer) network. Meanwhile, the fine-grained long-range contextual dependencies are also captured during this process, since patches that are far away in the spatial domain can also be assigned to the same group. In addition, masks produced by $\mathcal{C}$ are utilized to guide the patch grouping process, providing a heuristics decision. Moreover, the congruence constraints between the two branches are also exploited to maintain the spatial consistency among the patches. Overall, we stack the multi-stage process in a pyramid way. Experiments show that GPWFormer outperforms the existing methods with significant improvements on five benchmark datasets.
With the increasing interest and rapid development of methods for Ultra-High Resolution (UHR) segmentation, a large-scale benchmark covering a wide range of scenes with full fine-grained dense annotations is urgently needed to facilitate the field. To this end, the URUR dataset is introduced, in the meaning of Ultra-High Resolution dataset with Ultra-Rich Context. As the name suggests, URUR contains amounts of images with high enough resolution (3,008 images of size 5,120x5,120), a wide range of complex scenes (from 63 cities), rich-enough context (1 million instances with 8 categories) and fine-grained annotations (about 80 billion manually annotated pixels), which is far superior to all the existing UHR datasets including DeepGlobe, Inria Aerial, UDD, etc.. Moreover, we also propose WSDNet, a more efficient and effective framework for UHR segmentation especially with ultra-rich context. Specifically, multi-level Discrete Wavelet Transform (DWT) is naturally integrated to release computation burden while preserve more spatial details, along with a Wavelet Smooth Loss (WSL) to reconstruct original structured context and texture with a smooth constrain. Experiments on several UHR datasets demonstrate its state-of-the-art performance. The dataset is available at https://github.com/jankyee/URUR.
Existing knowledge distillation works for semantic segmentation mainly focus on transferring high-level contextual knowledge from teacher to student. However, low-level texture knowledge is also of vital importance for characterizing the local structural pattern and global statistical property, such as boundary, smoothness, regularity and color contrast, which may not be well addressed by high-level deep features. In this paper, we are intended to take full advantage of both structural and statistical texture knowledge and propose a novel Structural and Statistical Texture Knowledge Distillation (SSTKD) framework for semantic segmentation. Specifically, for structural texture knowledge, we introduce a Contourlet Decomposition Module (CDM) that decomposes low-level features with iterative Laplacian pyramid and directional filter bank to mine the structural texture knowledge. For statistical knowledge, we propose a Denoised Texture Intensity Equalization Module (DTIEM) to adaptively extract and enhance statistical texture knowledge through heuristics iterative quantization and denoised operation. Finally, each knowledge learning is supervised by an individual loss function, forcing the student network to mimic the teacher better from a broader perspective. Experiments show that the proposed method achieves state-of-the-art performance on Cityscapes, Pascal VOC 2012 and ADE20K datasets.
Existing semantic segmentation works mainly focus on learning the contextual information in high-level semantic features with CNNs. In order to maintain a precise boundary, low-level texture features are directly skip-connected into the deeper layers. Nevertheless, texture features are not only about local structure, but also include global statistical knowledge of the input image. In this paper, we fully take advantages of the low-level texture features and propose a novel Statistical Texture Learning Network (STLNet) for semantic segmentation. For the first time, STLNet analyzes the distribution of low level information and efficiently utilizes them for the task. Specifically, a novel Quantization and Counting Operator (QCO) is designed to describe the texture information in a statistical manner. Based on QCO, two modules are introduced: (1) Texture Enhance Module (TEM), to capture texture-related information and enhance the texture details; (2) Pyramid Texture Feature Extraction Module (PTFEM), to effectively extract the statistical texture features from multiple scales. Through extensive experiments, we show that the proposed STLNet achieves state-of-the-art performance on three semantic segmentation benchmarks: Cityscapes, PASCAL Context and ADE20K.
Most existing re-identification methods focus on learning robust and discriminative features with deep convolution networks. However, many of them consider content similarity separately and fail to utilize the context information of the query and gallery sets, e.g. probe-gallery and gallery-gallery relations, thus hard samples may not be well solved due tothe limited or even misleading information. In this paper,we present a novel Context-Aware Graph Convolution Net-work (CAGCN), where the probe-gallery relations are encoded into the graph nodes and the graph edge connections are well controlled by the gallery-gallery relations. In this way, hard samples can be addressed with the context information flows among other easy samples during the graph reasoning. Specifically, we adopt an effective hard gallery sampler to obtain high recall for positive samples while keeping a reasonable graph size, which can also weaken the imbalanced problem in training process with low computation complexity. Experiments show that the proposed method achieves state-of-the-art performance on both person and vehicle re-identification datasets in a plug and play fashion with limited overhead.
Recent works have made great progress in semantic segmentation by exploiting contextual information in a local or global manner with dilated convolutions, pyramid pooling or self-attention mechanism. In order to avoid potential misleading contextual information aggregation in previous works, we propose a class-wise dynamic graph convolution (CDGC) module to adaptively propagate information. The graph reasoning is performed among pixels in the same class. Based on the proposed CDGC module, we further introduce the Class-wise Dynamic Graph Convolution Network(CDGCNet), which consists of two main parts including the CDGC module and a basic segmentation network, forming a coarse-to-fine paradigm. Specifically, the CDGC module takes the coarse segmentation result as class mask to extract node features for graph construction and performs dynamic graph convolutions on the constructed graph to learn the feature aggregation and weight allocation. Then the refined feature and the original feature are fused to get the final prediction. We conduct extensive experiments on three popular semantic segmentation benchmarks including Cityscapes, PASCAL VOC 2012 and COCO Stuff, and achieve state-of-the-art performance on all three benchmarks.