Abstract:As a key component in boosting online user growth, uplift modeling aims to measure individual user responses (e.g., whether to play the game) to various treatments, such as gaming bonuses, thereby enhancing business outcomes. However, previous research typically considers a single-task, single-treatment setting, where only one treatment exists and the overall treatment effect is measured by a single type of user response. In this paper, we propose a Multi-Treatment Multi-Task (MTMT) uplift network to estimate treatment effects in a multi-task scenario. We identify the multi-treatment problem as a causal inference problem with a tiered response, comprising a base effect (from offering a treatment) and an incremental effect (from offering a specific type of treatment), where the base effect can be numerically much larger than the incremental effect. Specifically, MTMT separately encodes user features and treatments. The user feature encoder uses a multi-gate mixture of experts (MMOE) network to encode relevant user features, explicitly learning inter-task relations. The resultant embeddings are used to measure natural responses per task. Furthermore, we introduce a treatment-user feature interaction module to model correlations between each treatment and user feature. Consequently, we separately measure the base and incremental treatment effect for each task based on the produced treatment-aware representations. Experimental results based on an offline public dataset and an online proprietary dataset demonstrate the effectiveness of MTMT in single/multi-treatment and single/multi-task settings. Additionally, MTMT has been deployed in our gaming platform to improve user experience.
Abstract:Technology mapping involves mapping logical circuits to a library of cells. Traditionally, the full technology library is used, leading to a large search space and potential overhead. Motivated by randomly sampled technology mapping case studies, we propose MapTune framework that addresses this challenge by utilizing reinforcement learning to make design-specific choices during cell selection. By learning from the environment, MapTune refines the cell selection process, resulting in a reduced search space and potentially improved mapping quality. The effectiveness of MapTune is evaluated on a wide range of benchmarks, different technology libraries and technology mappers. The experimental results demonstrate that MapTune achieves higher mapping accuracy and reducing delay/area across diverse circuit designs, technology libraries and mappers. The paper also discusses the Pareto-Optimal exploration and confirms the perpetual delay-area trade-off. Conducted on benchmark suites ISCAS 85/89, ITC/ISCAS 99, VTR8.0 and EPFL benchmarks, the post-technology mapping and post-sizing quality-of-results (QoR) have been significantly improved, with average Area-Delay Product (ADP) improvement of 22.54\% among all different exploration settings in MapTune. The improvements are consistently remained for four different technologies (7nm, 45nm, 130nm, and 180 nm) and two different mappers.
Abstract:The multiplayer online battle arena (MOBA) genre has gained significant popularity and economic success, attracting considerable research interest within the Human-Computer Interaction community. Enhancing the gaming experience requires a deep understanding of player behavior, and a crucial aspect of MOBA games is matchmaking, which aims to assemble teams of comparable skill levels. However, existing matchmaking systems often neglect important factors such as players' position preferences and team assignment, resulting in imbalanced matches and reduced player satisfaction. To address these limitations, this paper proposes a novel framework called CUPID, which introduces a novel process called ``re-matchmaking'' to optimize team and position assignments to improve both fairness and player satisfaction. CUPID incorporates a pre-filtering step to ensure a minimum level of matchmaking quality, followed by a pre-match win-rate prediction model that evaluates the fairness of potential assignments. By simultaneously considering players' position satisfaction and game fairness, CUPID aims to provide an enhanced matchmaking experience. Extensive experiments were conducted on two large-scale, real-world MOBA datasets to validate the effectiveness of CUPID. The results surpass all existing state-of-the-art baselines, with an average relative improvement of 7.18% in terms of win prediction accuracy. Furthermore, CUPID has been successfully deployed in a popular online mobile MOBA game. The deployment resulted in significant improvements in match fairness and player satisfaction, as evidenced by critical Human-Computer Interaction (HCI) metrics covering usability, accessibility, and engagement, observed through A/B testing. To the best of our knowledge, CUPID is the first re-matchmaking system designed specifically for large-scale MOBA games.
Abstract:Combinatorial Optimization (CO) plays a crucial role in addressing various significant problems, among them the challenging Maximum Independent Set (MIS) problem. In light of recent advancements in deep learning methods, efforts have been directed towards leveraging data-driven learning approaches, typically rooted in supervised learning and reinforcement learning, to tackle the NP-hard MIS problem. However, these approaches rely on labeled datasets, exhibit weak generalization, and often depend on problem-specific heuristics. Recently, ReLU-based dataless neural networks were introduced to address combinatorial optimization problems. This paper introduces a novel dataless quadratic neural network formulation, featuring a continuous quadratic relaxation for the MIS problem. Notably, our method eliminates the need for training data by treating the given MIS instance as a trainable entity. More specifically, the graph structure and constraints of the MIS instance are used to define the structure and parameters of the neural network such that training it on a fixed input provides a solution to the problem, thereby setting it apart from traditional supervised or reinforcement learning approaches. By employing a gradient-based optimization algorithm like ADAM and leveraging an efficient off-the-shelf GPU parallel implementation, our straightforward yet effective approach demonstrates competitive or superior performance compared to state-of-the-art learning-based methods. Another significant advantage of our approach is that, unlike exact and heuristic solvers, the running time of our method scales only with the number of nodes in the graph, not the number of edges.
Abstract:This paper addresses the complex issue of resource-constrained scheduling, an NP-hard problem that spans critical areas including chip design and high-performance computing. Traditional scheduling methods often stumble over scalability and applicability challenges. We propose a novel approach using a differentiable combinatorial scheduling framework, utilizing Gumbel-Softmax differentiable sampling technique. This new technical allows for a fully differentiable formulation of linear programming (LP) based scheduling, extending its application to a broader range of LP formulations. To encode inequality constraints for scheduling tasks, we introduce \textit{constrained Gumbel Trick}, which adeptly encodes arbitrary inequality constraints. Consequently, our method facilitates an efficient and scalable scheduling via gradient descent without the need for training data. Comparative evaluations on both synthetic and real-world benchmarks highlight our capability to significantly improve the optimization efficiency of scheduling, surpassing state-of-the-art solutions offered by commercial and open-source solvers such as CPLEX, Gurobi, and CP-SAT in the majority of the designs.
Abstract:Based on Pre-trained Language Models (PLMs), event coreference resolution (ECR) systems have demonstrated outstanding performance in clustering coreferential events across documents. However, the existing system exhibits an excessive reliance on the `triggers lexical matching' spurious pattern in the input mention pair text. We formalize the decision-making process of the baseline ECR system using a Structural Causal Model (SCM), aiming to identify spurious and causal associations (i.e., rationales) within the ECR task. Leveraging the debiasing capability of counterfactual data augmentation, we develop a rationale-centric counterfactual data augmentation method with LLM-in-the-loop. This method is specialized for pairwise input in the ECR system, where we conduct direct interventions on triggers and context to mitigate the spurious association while emphasizing the causation. Our approach achieves state-of-the-art performance on three popular cross-document ECR benchmarks and demonstrates robustness in out-of-domain scenarios.
Abstract:Multimodal large language models (MLLMs) have demonstrated promising results in a variety of tasks that combine vision and language. As these models become more integral to research and applications, conducting comprehensive evaluations of their capabilities has grown increasingly important. However, most existing benchmarks fail to consider that, in certain situations, images need to be interpreted within a broader context. In this work, we introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension. Our findings indicate that MLLMs consistently fall short of human performance on this benchmark. Further analysis confirms that these models struggle to effectively extract and utilize contextual information to improve their understanding of images. This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner. View our project website at https://thunlp-mt.github.io/CODIS.
Abstract:Boolean algebraic manipulation is at the core of logic synthesis in Electronic Design Automation (EDA) design flow. Existing methods struggle to fully exploit optimization opportunities, and often suffer from an explosive search space and limited scalability efficiency. This work presents BoolGebra, a novel attributed graph-learning approach for Boolean algebraic manipulation that aims to improve fundamental logic synthesis. BoolGebra incorporates Graph Neural Networks (GNNs) and takes initial feature embeddings from both structural and functional information as inputs. A fully connected neural network is employed as the predictor for direct optimization result predictions, significantly reducing the search space and efficiently locating the optimization space. The experiments involve training the BoolGebra model w.r.t design-specific and cross-design inferences using the trained model, where BoolGebra demonstrates generalizability for cross-design inference and its potential to scale from small, simple training datasets to large, complex inference datasets. Finally, BoolGebra is integrated with existing synthesis tool ABC to perform end-to-end logic minimization evaluation w.r.t SOTA baselines.
Abstract:The complexity of modern hardware designs necessitates advanced methodologies for optimizing and analyzing modern digital systems. In recent times, machine learning (ML) methodologies have emerged as potent instruments for assessing design quality-of-results at the Register-Transfer Level (RTL) or Boolean level, aiming to expedite design exploration of advanced RTL configurations. In this presentation, we introduce an innovative open-source framework that translates RTL designs into graph representation foundations, which can be seamlessly integrated with the PyTorch Geometric graph learning platform. Furthermore, the Verilog-to-PyG (V2PYG) framework is compatible with the open-source Electronic Design Automation (EDA) toolchain OpenROAD, facilitating the collection of labeled datasets in an utterly open-source manner. Additionally, we will present novel RTL data augmentation methods (incorporated in our framework) that enable functional equivalent design augmentation for the construction of an extensive graph-based RTL design database. Lastly, we will showcase several using cases of V2PYG with detailed scripting examples. V2PYG can be found at \url{https://yu-maryland.github.io/Verilog-to-PyG/}.
Abstract:Active learning aims to construct an effective training set by iteratively curating the most informative unlabeled data for annotation, which is practical in low-resource tasks. Most active learning techniques in classification rely on the model's uncertainty or disagreement to choose unlabeled data. However, previous work indicates that existing models are poor at quantifying predictive uncertainty, which can lead to over-confidence in superficial patterns and a lack of exploration. Inspired by the cognitive processes in which humans deduce and predict through causal information, we propose a novel Explainable Active Learning framework (XAL) for low-resource text classification, which aims to encourage classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations. Specifically, besides using a pre-trained bi-directional encoder for classification, we employ a pre-trained uni-directional decoder to generate and score the explanation. A ranking loss is proposed to enhance the decoder's capability in scoring explanations. During the selection of unlabeled data, we combine the predictive uncertainty of the encoder and the explanation score of the decoder to acquire informative data for annotation. As XAL is a general framework for text classification, we test our methods on six different classification tasks. Extensive experiments show that XAL achieves substantial improvement on all six tasks over previous AL methods. Ablation studies demonstrate the effectiveness of each component, and human evaluation shows that the model trained in XAL performs surprisingly well in explaining its prediction.