Abstract:Transformers deliver outstanding performance across a wide range of tasks and are now a dominant backbone architecture for large language models (LLMs). Their task-solving performance is improved by increasing parameter size, as shown in the recent studies on parameter scaling laws. Although recent mechanistic-interpretability studies have deepened our understanding of the internal behavior of Transformers by analyzing their residual stream, the relationship between these internal mechanisms and the parameter scaling laws remains unclear. To bridge this gap, we focus on layers and their size, which mainly decide the parameter size of Transformers. For this purpose, we first theoretically investigate the layers within the residual stream through a bias-diversity decomposition. The decomposition separates (i) bias, the error of each layer's output from the ground truth, and (ii) diversity, which indicates how much the outputs of each layer differ from each other. Analyzing Transformers under this theory reveals that performance improves when individual layers make predictions close to the correct answer and remain mutually diverse. We show that diversity becomes especially critical when individual layers' outputs are far from the ground truth. Finally, we introduce an information-theoretic diversity and show our main findings that adding layers enhances performance only when those layers behave differently, i.e., are diverse. We also reveal the performance gains from increasing the number of layers exhibit submodularity: marginal improvements diminish as additional layers increase, mirroring the logarithmic convergence predicted by the parameter scaling laws. Experiments on multiple semantic-understanding tasks with various LLMs empirically confirm the theoretical properties derived in this study.
Abstract:Generating images from prompts containing specific entities requires models to retain as much entity-specific knowledge as possible. However, fully memorizing such knowledge is impractical due to the vast number of entities and their continuous emergence. To address this, we propose Text-based Intelligent Generation with Entity prompt Refinement (TextTIGER), which augments knowledge on entities included in the prompts and then summarizes the augmented descriptions using Large Language Models (LLMs) to mitigate performance degradation from longer inputs. To evaluate our method, we introduce WiT-Cub (WiT with Captions and Uncomplicated Background-explanations), a dataset comprising captions, images, and an entity list. Experiments on four image generation models and five LLMs show that TextTIGER improves image generation performance in standard metrics (IS, FID, and CLIPScore) compared to caption-only prompts. Additionally, multiple annotators' evaluation confirms that the summarized descriptions are more informative, validating LLMs' ability to generate concise yet rich descriptions. These findings demonstrate that refining prompts with augmented and summarized entity-related descriptions enhances image generation capabilities. The code and dataset will be available upon acceptance.
Abstract:Vision-Language Models (VLMs) occasionally generate outputs that contradict input images, constraining their reliability in real-world applications. While visual prompting is reported to suppress hallucinations by augmenting prompts with relevant area inside an image, the effectiveness in terms of the area remains uncertain. This study analyzes success and failure cases of Attention-driven visual prompting in object hallucination, revealing that preserving background context is crucial for mitigating object hallucination.
Abstract:Extreme multi-label learning (XML) is a task of assigning multiple labels from an extremely large set of labels to each data instance. Many current high-performance XML models are composed of a lot of hyperparameters, which complicates the tuning process. Additionally, the models themselves are adapted specifically to XML, which complicates their reimplementation. To remedy this problem, we propose a simple method based on ridge regression for XML. The proposed method not only has a closed-form solution but also is composed of a single hyperparameter. Since there are no precedents on applying ridge regression to XML, this paper verified the performance of the method by using various XML benchmark datasets. Furthermore, we enhanced the prediction of low-frequency labels in XML, which hold informative content. This prediction is essential yet challenging because of the limited amount of data. Here, we employed a simple frequency-based weighting. This approach greatly simplifies the process compared with existing techniques. Experimental results revealed that it can achieve levels of performance comparable to, or even exceeding, those of models with numerous hyperparameters. Additionally, we found that the frequency-based weighting significantly improved the predictive performance for low-frequency labels, while requiring almost no changes in implementation. The source code for the proposed method is available on github at https://github.com/cars1015/XML-ridge.
Abstract:In recent years, there has been a notable increase in research on machine learning models for music retrieval and generation systems that are capable of taking natural language sentences as inputs. However, there is a scarcity of large-scale publicly available datasets, consisting of music data and their corresponding natural language descriptions known as music captions. In particular, non-musical information such as suitable situations for listening to a track and the emotions elicited upon listening is crucial for describing music. This type of information is underrepresented in existing music caption datasets due to the challenges associated with extracting it directly from music data. To address this issue, we propose a method for generating music caption data that incorporates non-musical aspects inferred from music thumbnail images, and validated the effectiveness of our approach through human evaluations. Additionally, we created a dataset with approximately 360,000 captions containing non-musical aspects. Leveraging this dataset, we trained a music retrieval model and demonstrated its effectiveness in music retrieval tasks through evaluation.
Abstract:Retrieval Augmented Generation (RAG) complements the knowledge of Large Language Models (LLMs) by leveraging external information to enhance response accuracy for queries. This approach is widely applied in several fields by taking its advantage of injecting the most up-to-date information, and researchers are focusing on understanding and improving this aspect to unlock the full potential of RAG in such high-stakes applications. However, despite the potential of RAG to address these needs, the mechanisms behind the confidence levels of its outputs remain underexplored, although the confidence of information is very critical in some domains, such as finance, healthcare, and medicine. Our study focuses the impact of RAG on confidence within the medical domain under various configurations and models. We evaluate confidence by treating the model's predicted probability as its output and calculating Expected Calibration Error (ECE) and Adaptive Calibration Error (ACE) scores based on the probabilities and accuracy. In addition, we analyze whether the order of retrieved documents within prompts calibrates the confidence. Our findings reveal large variation in confidence and accuracy depending on the model, settings, and the format of input prompts. These results underscore the necessity of optimizing configurations based on the specific model and conditions.
Abstract:Today, manga has gained worldwide popularity. However, the question of how various elements of manga, such as characters, text, and panel layouts, reflect the uniqueness of a particular work, or even define it, remains an unexplored area. In this paper, we aim to quantitatively and qualitatively analyze the visual characteristics of manga works, with a particular focus on panel layout features. As a research method, we used facing page images of manga as input to train a deep learning model for predicting manga titles, examining classification accuracy to quantitatively analyze these features. Specifically, we conducted ablation studies by limiting page image information to panel frames to analyze the characteristics of panel layouts. Through a series of quantitative experiments using all 104 works, 12 genres, and 10,122 facing page images from the Manga109 dataset, as well as qualitative analysis using Grad-CAM, our study demonstrates that the uniqueness of manga works is strongly reflected in their panel layouts.
Abstract:Text generation commonly relies on greedy and beam decoding that limit the search space and degrade output quality. Minimum Bayes Risk (MBR) decoding can mitigate this problem by utilizing automatic evaluation metrics and model-generated pseudo-references. Previous studies have conducted empirical analyses to reveal the improvement by MBR decoding, and reported various observations. However, despite these observations, the theoretical relationship between them remains uncertain. To address this, we present a novel theoretical interpretation of MBR decoding from the perspective of bias-diversity decomposition. We decompose errors in the estimated quality of generated hypotheses in MBR decoding into two key factors: bias, which reflects the closeness between utility functions and human evaluations, and diversity, which represents the variation in the estimated quality of utility functions. Our theoretical analysis reveals the difficulty in simultaneously improving both bias and diversity, and highlights the effectiveness of increasing diversity to enhance MBR decoding performance. This analysis verifies the alignment between our theoretical insights and the empirical results reported in previous work. Furthermore, to support our theoretical findings, we propose a new metric, pseudo-bias, which approximates the bias term using gold references. We also introduce a new MBR approach, Metric-augmented MBR (MAMBR), which increases diversity by adjusting the behavior of utility functions without altering the pseudo-references. Experimental results across multiple NLP tasks show that the decomposed terms in the bias-diversity decomposition correlate well with performance, and that MAMBR improves text generation quality by modifying utility function behavior. Our code will be available at https://github.com/naist-nlp/mbr-bias-diversity.
Abstract:As the performance of Large-scale Vision Language Models (LVLMs) improves, they are increasingly capable of responding in multiple languages, and there is an expectation that the demand for explanations generated by LVLMs will grow. However, pre-training of Vision Encoder and the integrated training of LLMs with Vision Encoder are mainly conducted using English training data, leaving it uncertain whether LVLMs can completely handle their potential when generating explanations in languages other than English. In addition, multilingual QA benchmarks that create datasets using machine translation have cultural differences and biases, remaining issues for use as evaluation tasks. To address these challenges, this study created an extended dataset in multiple languages without relying on machine translation. This dataset that takes into account nuances and country-specific phrases was then used to evaluate the generation explanation abilities of LVLMs. Furthermore, this study examined whether Instruction-Tuning in resource-rich English improves performance in other languages. Our findings indicate that LVLMs perform worse in languages other than English compared to English. In addition, it was observed that LVLMs struggle to effectively manage the knowledge learned from English data.
Abstract:The extreme multi-label classification~(XMC) task involves learning a classifier that can predict from a large label set the most relevant subset of labels for a data instance. While deep neural networks~(DNNs) have demonstrated remarkable success in XMC problems, the task is still challenging because it must deal with a large number of output labels, which make the DNN training computationally expensive. This paper addresses the issue by exploring the use of random circular vectors, where each vector component is represented as a complex amplitude. In our framework, we can develop an output layer and loss function of DNNs for XMC by representing the final output layer as a fully connected layer that directly predicts a low-dimensional circular vector encoding a set of labels for a data instance. We conducted experiments on synthetic datasets to verify that circular vectors have better label encoding capacity and retrieval ability than normal real-valued vectors. Then, we conducted experiments on actual XMC datasets and found that these appealing properties of circular vectors contribute to significant improvements in task performance compared with a previous model using random real-valued vectors, while reducing the size of the output layers by up to 99%.