Abstract:Multimodal Large Language Models (MLLMs) hold significant promise for revolutionizing traditional education and reducing teachers' workload. However, accurately interpreting unconstrained STEM student handwritten solutions with intertwined mathematical formulas, diagrams, and textual reasoning poses a significant challenge due to the lack of authentic and domain-specific benchmarks. Additionally, current evaluation paradigms predominantly rely on the outcomes of downstream tasks (e.g., auto-grading), which often probe only a subset of the recognized content, thereby failing to capture the MLLMs' understanding of complex handwritten logic as a whole. To bridge this gap, we release EDU-CIRCUIT-HW, a dataset consisting of 1,300+ authentic student handwritten solutions from a university-level STEM course. Utilizing the expert-verified verbatim transcriptions and grading reports of student solutions, we simultaneously evaluate various MLLMs' upstream recognition fidelity and downstream auto-grading performance. Our evaluation uncovers an astonishing scale of latent failures within MLLM-recognized student handwritten content, highlighting the models' insufficient reliability for auto-grading and other understanding-oriented applications in high-stakes educational settings. In solution, we present a case study demonstrating that leveraging identified error patterns to preemptively detect and rectify recognition errors, with only minimal human intervention (approximately 4% of the total solutions), can significantly enhance the robustness of the deployed AI-enabled grading system on unseen student solutions.
Abstract:This research-to-practice work-in-progress (WIP) paper presents an AI-enabled smart tutor designed to provide homework assessment and feedback for students in an undergraduate circuit analysis course. We detail the tutor's design philosophy and core components, including open-ended question answering and homework feedback generation. The prompts are carefully crafted to optimize responses across different problems. The smart tutor was deployed on the Microsoft Azure platform and is currently in use in an undergraduate circuit analysis course at the School of Electrical and Computer Engineering in a large, public, research-intensive institution in the Southeastern United States. Beyond offering personalized instruction and feedback, the tutor collects student interaction data, which is summarized and shared with the course instructor. To evaluate its effectiveness, we collected student feedback, with 90.9% of responses indicating satisfaction with the tutor. Additionally, we analyze a subset of collected data on preliminary circuit analysis topics to assess tutor usage frequency for each problem and identify frequently asked questions. These insights help instructors gain real-time awareness of student difficulties, enabling more targeted classroom instruction. In future work, we will release a full analysis once the complete dataset is available after the Spring 2025 semester. We also explore the potential applications of this smart tutor across a broader range of engineering disciplines by developing improved prompts, diagram-recognition methods, and database management strategies, which remain ongoing areas of research.