Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine
Abstract:We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.
Abstract:Repertoire-level analysis of T cell receptors offers a biologically grounded signal for disease detection and immune monitoring, yet practical deployment is impeded by label sparsity, cohort heterogeneity, and the computational burden of adapting large encoders to new tasks. We introduce a framework that synthesizes compact task-specific parameterizations from a learned dictionary of prototypes conditioned on lightweight task descriptors derived from repertoire probes and pooled embedding statistics. This synthesis produces small adapter modules applied to a frozen pretrained backbone, enabling immediate adaptation to novel tasks with only a handful of support examples and without full model fine-tuning. The architecture preserves interpretability through motif-aware probes and a calibrated motif discovery pipeline that links predictive decisions to sequence-level signals. Together, these components yield a practical, sample-efficient, and interpretable pathway for translating repertoire-informed models into diverse clinical and research settings where labeled data are scarce and computational resources are constrained.
Abstract:Childhood anemia remains a major public health challenge in Nepal and is associated with impaired growth, cognition, and increased morbidity. Using World Health Organization hemoglobin thresholds, we defined anemia status for children aged 6-59 months and formulated a binary classification task by grouping all anemia severities as \emph{anemic} versus \emph{not anemic}. We analyzed Nepal Demographic and Health Survey (NDHS 2022) microdata comprising 1,855 children and initially considered 48 candidate features spanning demographic, socioeconomic, maternal, and child health characteristics. To obtain a stable and substantiated feature set, we applied four features selection techniques (Chi-square, mutual information, point-biserial correlation, and Boruta) and prioritized features supported by multi-method consensus. Five features: child age, recent fever, household size, maternal anemia, and parasite deworming were consistently selected by all methods, while amenorrhea, ethnicity indicators, and provinces were frequently retained. We then compared eight traditional machine learning classifiers (LR, KNN, DT, RF, XGBoost, SVM, NB, LDA) with two deep learning models (DNN and TabNet) using standard evaluation metrics, emphasizing F1-score and recall due to class imbalance. Among all models, logistic regression attained the best recall (0.701) and the highest F1-score (0.649), while DNN achieved the highest accuracy (0.709), and SVM yielded the strongest discrimination with the highest AUC (0.736). Overall, the results indicate that both machine learning and deep learning models can provide competitive anemia prediction and the interpretable features such as child age, infection proxy, maternal anemia, and deworming history are central for risk stratification and public health screening in Nepal.
Abstract:Portrait customization (PC) has recently garnered significant attention due to its potential applications. However, existing PC methods lack precise identity (ID) preservation and face control. To address these tissues, we propose Diff-PC, a diffusion-based framework for zero-shot PC, which generates realistic portraits with high ID fidelity, specified facial attributes, and diverse backgrounds. Specifically, our approach employs the 3D face predictor to reconstruct the 3D-aware facial priors encompassing the reference ID, target expressions, and poses. To capture fine-grained face details, we design ID-Encoder that fuses local and global facial features. Subsequently, we devise ID-Ctrl using the 3D face to guide the alignment of ID features. We further introduce ID-Injector to enhance ID fidelity and facial controllability. Finally, training on our collected ID-centric dataset improves face similarity and text-to-image (T2I) alignment. Extensive experiments demonstrate that Diff-PC surpasses state-of-the-art methods in ID preservation, facial control, and T2I consistency. Furthermore, our method is compatible with multi-style foundation models.
Abstract:Benefiting from the significant advancements in text-to-image diffusion models, research in personalized image generation, particularly customized portrait generation, has also made great strides recently. However, existing methods either require time-consuming fine-tuning and lack generalizability or fail to achieve high fidelity in facial details. To address these issues, we propose FaceSnap, a novel method based on Stable Diffusion (SD) that requires only a single reference image and produces extremely consistent results in a single inference stage. This method is plug-and-play and can be easily extended to different SD models. Specifically, we design a new Facial Attribute Mixer that can extract comprehensive fused information from both low-level specific features and high-level abstract features, providing better guidance for image generation. We also introduce a Landmark Predictor that maintains reference identity across landmarks with different poses, providing diverse yet detailed spatial control conditions for image generation. Then we use an ID-preserving module to inject these into the UNet. Experimental results demonstrate that our approach performs remarkably in personalized and customized portrait generation, surpassing other state-of-the-art methods in this domain.
Abstract:Large language models (LLMs) have exhibited remarkable performance on complex reasoning tasks, with reinforcement learning under verifiable rewards (RLVR) emerging as a principled framework for aligning model behavior with reasoning chains. Despite its promise, RLVR remains prohibitively resource-intensive, requiring extensive reward signals and incurring substantial rollout costs during training. In this work, we revisit the fundamental question of data and compute efficiency in RLVR. We first establish a theoretical lower bound on the sample complexity required to unlock reasoning capabilities, and empirically validate that strong performance can be achieved with a surprisingly small number of training instances. To tackle the computational burden, we propose Dynamic One-Shot Policy Refinement (DoPR), an uncertainty-aware RL strategy that dynamically selects a single informative training sample per batch for policy updates, guided by reward volatility and exploration-driven acquisition. DoPR reduces rollout overhead by nearly an order of magnitude while preserving competitive reasoning accuracy, offering a scalable and resource-efficient solution for LLM post-training. This approach offers a practical path toward more efficient and accessible RL-based training for reasoning-intensive LLM applications.
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated remarkable success in enhancing the reasoning capabilities of Large Language Models (LLMs). However, recent studies question whether RL genuinely expands reasoning capacity or merely aligns existing latent capabilities, arguing that exploration remains confined within the pre-trained model's low-rank bias manifold. In this work, we challenge this accessibility boundary hypothesis by demonstrating that the latent reasoning space can be fundamentally expanded through targeted geometric interventions. We propose Manifold-Reshaping Policy Optimization (MRPO), a geometric framework designed to fundamentally restructure the inference space of LLMs. MRPO operates in two stages: first, we employ Spectral Orthogonal Exploration (SOE) to eject the policy initialization into the null space of the bias manifold; second, we integrate an Effective Rank regularization term into the policy optimization objective. This approach incentivizes the discovery and maintenance of high-dimensional reasoning trajectories against the entropy-reducing tendency of standard RL. Empirically, our 4B-parameter method achieves state-of-the-art performance on mathematical tasks, significantly outperforming larger models (e.g., Qwen3-32B) and expanding the capability boundary beyond standard GRPO. Our code is available at https://anonymous.4open.science/r/MRPO-D57B/
Abstract:Rapid advancements in sixth-generation (6G) networks and large language models (LLMs) have paved the way for ubiquitous intelligence, wherein seamless connectivity and distributed artificial intelligence (AI) have revolutionized various aspects of our lives.However, realizing this vision faces significant challenges owing to the fragmented and heterogeneous computing resources across hierarchical networks, which are insufficient for individual LLM agents to perform complex reasoning tasks.To address this issue, we propose Collaborative Orchestration Role at Edge (CORE), an innovative framework that employs a collaborative learning system in which multiple LLMs, each assigned a distinct functional role, are distributed across mobile devices and tiered edge servers. The system integrates three optimization modules, encompassing real-time perception,dynamic role orchestration, and pipeline-parallel execution, to facilitate efficient and rapid collaboration among distributed agents. Furthermore, we introduce a novel role affinity scheduling algorithm for dynamically orchestrating LLM role assignments across the hierarchical edge infrastructure, intelligently matching computational demands with available dispersed resources.Finally, comprehensive case studies and performance evaluations across various 6G application scenarios demonstrated the efficacy of CORE, revealing significant enhancements in the system efficiency and task completion rates. Building on these promising outcomes, we further validated the practical applicability of CORE by deploying it on a real-world edge-computing platform,that exhibits robust performance in operational environments.
Abstract:Language-model-based agents operating over extended interaction horizons face persistent challenges in preserving temporally grounded information and maintaining behavioral consistency across sessions, a failure mode we term soul erosion. We present BMAM (Brain-inspired Multi-Agent Memory), a general-purpose memory architecture that models agent memory as a set of functionally specialized subsystems rather than a single unstructured store. Inspired by cognitive memory systems, BMAM decomposes memory into episodic, semantic, salience-aware, and control-oriented components that operate at complementary time scales. To support long-horizon reasoning, BMAM organizes episodic memories along explicit timelines and retrieves evidence by fusing multiple complementary signals. Experiments on the LoCoMo benchmark show that BMAM achieves 78.45 percent accuracy under the standard long-horizon evaluation setting, and ablation analyses confirm that the hippocampus-inspired episodic memory subsystem plays a critical role in temporal reasoning.
Abstract:Unified Multimodal Models (UMMs) exhibit strong understanding, yet this capability often fails to effectively guide generation. We identify this as a Cognitive Gap: the model lacks the understanding of how to enhance its own generation process. To bridge this gap, we propose Endogenous Reprompting, a mechanism that transforms the model's understanding from a passive encoding process into an explicit generative reasoning step by generating self-aligned descriptors during generation. To achieve this, we introduce SEER (Self-Evolving Evaluator and Reprompter), a training framework that establishes a two-stage endogenous loop using only 300 samples from a compact proxy task, Visual Instruction Elaboration. First, Reinforcement Learning with Verifiable Rewards (RLVR) activates the model's latent evaluation ability via curriculum learning, producing a high-fidelity endogenous reward signal. Second, Reinforcement Learning with Model-rewarded Thinking (RLMT) leverages this signal to optimize the generative reasoning policy. Experiments show that SEER consistently outperforms state-of-the-art baselines in evaluation accuracy, reprompting efficiency, and generation quality, without sacrificing general multimodal capabilities.