Abstract:Digital Compute-in-Memory (CIM) architectures have shown great promise in Deep Neural Network (DNN) acceleration by effectively addressing the "memory wall" bottleneck. However, the development and optimization of digital CIM accelerators are hindered by the lack of comprehensive tools that encompass both software and hardware design spaces. Moreover, existing design and evaluation frameworks often lack support for the capacity constraints inherent in digital CIM architectures. In this paper, we present CIMFlow, an integrated framework that provides an out-of-the-box workflow for implementing and evaluating DNN workloads on digital CIM architectures. CIMFlow bridges the compilation and simulation infrastructures with a flexible instruction set architecture (ISA) design, and addresses the constraints of digital CIM through advanced partitioning and parallelism strategies in the compilation flow. Our evaluation demonstrates that CIMFlow enables systematic prototyping and optimization of digital CIM architectures across diverse configurations, providing researchers and designers with an accessible platform for extensive design space exploration.
Abstract:Forecasting models are pivotal in a data-driven world with vast volumes of time series data that appear as a compound of vast Linear and Nonlinear patterns. Recent deep time series forecasting models struggle to utilize seasonal and trend decomposition to separate the entangled components. Such a strategy only explicitly extracts simple linear patterns like trends, leaving the other linear modes and vast unexplored nonlinear patterns to the residual. Their flawed linear and nonlinear feature extraction models and shallow-level decomposition limit their adaptation to the diverse patterns present in real-world scenarios. Given this, we innovate Recursive Residual Decomposition by introducing explicit extraction of both linear and nonlinear patterns. This deeper-level decomposition framework, which is named LiNo, captures linear patterns using a Li block which can be a moving average kernel, and models nonlinear patterns using a No block which can be a Transformer encoder. The extraction of these two patterns is performed alternatively and recursively. To achieve the full potential of LiNo, we develop the current simple linear pattern extractor to a general learnable autoregressive model, and design a novel No block that can handle all essential nonlinear patterns. Remarkably, the proposed LiNo achieves state-of-the-art on thirteen real-world benchmarks under univariate and multivariate forecasting scenarios. Experiments show that current forecasting models can deliver more robust and precise results through this advanced Recursive Residual Decomposition. We hope this work could offer insight into designing more effective forecasting models. Code is available at this Repository: https://github.com/Levi-Ackman/LiNo.