Abstract:Robustness and Effectiveness are critical aspects of developing dense retrieval models for real-world applications. It is known that there is a trade-off between the two. Recent work has addressed scaling laws of effectiveness in dense retrieval, revealing a power-law relationship between effectiveness and the size of models and data. Does robustness follow scaling laws too? If so, can scaling improve both robustness and effectiveness together, or do they remain locked in a trade-off? To answer these questions, we conduct a comprehensive experimental study. We find that:(i) Robustness, including out-of-distribution and adversarial robustness, also follows a scaling law.(ii) Robustness and effectiveness exhibit different scaling patterns, leading to significant resource costs when jointly improving both. Given these findings, we shift to the third factor that affects model performance, namely the optimization strategy, beyond the model size and data size. We find that: (i) By fitting different optimization strategies, the joint performance of robustness and effectiveness traces out a Pareto frontier. (ii) When the optimization strategy strays from Pareto efficiency, the joint performance scales in a sub-optimal direction. (iii) By adjusting the optimization weights to fit the Pareto efficiency, we can achieve Pareto training, where the scaling of joint performance becomes most efficient. Even without requiring additional resources, Pareto training is comparable to the performance of scaling resources several times under optimization strategies that overly prioritize either robustness or effectiveness. Finally, we demonstrate that our findings can help deploy dense retrieval models in real-world applications that scale efficiently and are balanced for robustness and effectiveness.
Abstract:Generative information retrieval methods retrieve documents by directly generating their identifiers. Much effort has been devoted to developing effective generative IR models. Less attention has been paid to the robustness of these models. It is critical to assess the out-of-distribution (OOD) generalization of generative IR models, i.e., how would such models generalize to new distributions? To answer this question, we focus on OOD scenarios from four perspectives in retrieval problems: (i)query variations; (ii)unseen query types; (iii)unseen tasks; and (iv)corpus expansion. Based on this taxonomy, we conduct empirical studies to analyze the OOD robustness of representative generative IR models against dense retrieval models. Our empirical results indicate that the OOD robustness of generative IR models is in need of improvement. By inspecting the OOD robustness of generative IR models we aim to contribute to the development of more reliable IR models. The code is available at \url{https://github.com/Davion-Liu/GR_OOD}.
Abstract:Neural ranking models (NRMs) have been shown to be highly effective in terms of retrieval performance. Unfortunately, they have also displayed a higher degree of sensitivity to attacks than previous generation models. To help expose and address this lack of robustness, we introduce a novel ranking attack framework named Attack-in-the-Chain, which tracks interactions between large language models (LLMs) and NRMs based on chain-of-thought (CoT) prompting to generate adversarial examples under black-box settings. Our approach starts by identifying anchor documents with higher ranking positions than the target document as nodes in the reasoning chain. We then dynamically assign the number of perturbation words to each node and prompt LLMs to execute attacks. Finally, we verify the attack performance of all nodes at each reasoning step and proceed to generate the next reasoning step. Empirical results on two web search benchmarks show the effectiveness of our method.
Abstract:Recent advances in neural information retrieval (IR) models have significantly enhanced their effectiveness over various IR tasks. The robustness of these models, essential for ensuring their reliability in practice, has also garnered significant attention. With a wide array of research on robust IR being proposed, we believe it is the opportune moment to consolidate the current status, glean insights from existing methodologies, and lay the groundwork for future development. We view the robustness of IR to be a multifaceted concept, emphasizing its necessity against adversarial attacks, out-of-distribution (OOD) scenarios and performance variance. With a focus on adversarial and OOD robustness, we dissect robustness solutions for dense retrieval models (DRMs) and neural ranking models (NRMs), respectively, recognizing them as pivotal components of the neural IR pipeline. We provide an in-depth discussion of existing methods, datasets, and evaluation metrics, shedding light on challenges and future directions in the era of large language models. To the best of our knowledge, this is the first comprehensive survey on the robustness of neural IR models, and we will also be giving our first tutorial presentation at SIGIR 2024 \url{https://sigir2024-robust-information-retrieval.github.io}. Along with the organization of existing work, we introduce a Benchmark for robust IR (BestIR), a heterogeneous evaluation benchmark for robust neural information retrieval, which is publicly available at \url{https://github.com/Davion-Liu/BestIR}. We hope that this study provides useful clues for future research on the robustness of IR models and helps to develop trustworthy search engines \url{https://github.com/Davion-Liu/Awesome-Robustness-in-Information-Retrieval}.
Abstract:Beyond effectiveness, the robustness of an information retrieval (IR) system is increasingly attracting attention. When deployed, a critical technology such as IR should not only deliver strong performance on average but also have the ability to handle a variety of exceptional situations. In recent years, research into the robustness of IR has seen significant growth, with numerous researchers offering extensive analyses and proposing myriad strategies to address robustness challenges. In this tutorial, we first provide background information covering the basics and a taxonomy of robustness in IR. Then, we examine adversarial robustness and out-of-distribution (OOD) robustness within IR-specific contexts, extensively reviewing recent progress in methods to enhance robustness. The tutorial concludes with a discussion on the robustness of IR in the context of large language models (LLMs), highlighting ongoing challenges and promising directions for future research. This tutorial aims to generate broader attention to robustness issues in IR, facilitate an understanding of the relevant literature, and lower the barrier to entry for interested researchers and practitioners.
Abstract:Adversarial ranking attacks have gained increasing attention due to their success in probing vulnerabilities, and, hence, enhancing the robustness, of neural ranking models. Conventional attack methods employ perturbations at a single granularity, e.g., word or sentence level, to target documents. However, limiting perturbations to a single level of granularity may reduce the flexibility of adversarial examples, thereby diminishing the potential threat of the attack. Therefore, we focus on generating high-quality adversarial examples by incorporating multi-granular perturbations. Achieving this objective involves tackling a combinatorial explosion problem, which requires identifying an optimal combination of perturbations across all possible levels of granularity, positions, and textual pieces. To address this challenge, we transform the multi-granular adversarial attack into a sequential decision-making process, where perturbations in the next attack step build on the perturbed document in the current attack step. Since the attack process can only access the final state without direct intermediate signals, we use reinforcement learning to perform multi-granular attacks. During the reinforcement learning process, two agents work cooperatively to identify multi-granular vulnerabilities as attack targets and organize perturbation candidates into a final perturbation sequence. Experimental results show that our attack method surpasses prevailing baselines in both attack effectiveness and imperceptibility.
Abstract:Neural ranking models (NRMs) have shown great success in information retrieval (IR). But their predictions can easily be manipulated using adversarial examples, which are crafted by adding imperceptible perturbations to legitimate documents. This vulnerability raises significant concerns about their reliability and hinders the widespread deployment of NRMs. By incorporating adversarial examples into training data, adversarial training has become the de facto defense approach to adversarial attacks against NRMs. However, this defense mechanism is subject to a trade-off between effectiveness and adversarial robustness. In this study, we establish theoretical guarantees regarding the effectiveness-robustness trade-off in NRMs. We decompose the robust ranking error into two components, i.e., a natural ranking error for effectiveness evaluation and a boundary ranking error for assessing adversarial robustness. Then, we define the perturbation invariance of a ranking model and prove it to be a differentiable upper bound on the boundary ranking error for attainable computation. Informed by our theoretical analysis, we design a novel \emph{perturbation-invariant adversarial training} (PIAT) method for ranking models to achieve a better effectiveness-robustness trade-off. We design a regularized surrogate loss, in which one term encourages the effectiveness to be maximized while the regularization term encourages the output to be smooth, so as to improve adversarial robustness. Experimental results on several ranking models demonstrate the superiority of PITA compared to existing adversarial defenses.
Abstract:Neural ranking models (NRMs) and dense retrieval (DR) models have given rise to substantial improvements in overall retrieval performance. In addition to their effectiveness, and motivated by the proven lack of robustness of deep learning-based approaches in other areas, there is growing interest in the robustness of deep learning-based approaches to the core retrieval problem. Adversarial attack methods that have so far been developed mainly focus on attacking NRMs, with very little attention being paid to the robustness of DR models. In this paper, we introduce the adversarial retrieval attack (AREA) task. The AREA task is meant to trick DR models into retrieving a target document that is outside the initial set of candidate documents retrieved by the DR model in response to a query. We consider the decision-based black-box adversarial setting, which is realistic in real-world search engines. To address the AREA task, we first employ existing adversarial attack methods designed for NRMs. We find that the promising results that have previously been reported on attacking NRMs, do not generalize to DR models: these methods underperform a simple term spamming method. We attribute the observed lack of generalizability to the interaction-focused architecture of NRMs, which emphasizes fine-grained relevance matching. DR models follow a different representation-focused architecture that prioritizes coarse-grained representations. We propose to formalize attacks on DR models as a contrastive learning problem in a multi-view representation space. The core idea is to encourage the consistency between each view representation of the target document and its corresponding viewer via view-wise supervision signals. Experimental results demonstrate that the proposed method can significantly outperform existing attack strategies in misleading the DR model with small indiscernible text perturbations.
Abstract:Recently, we have witnessed generative retrieval increasingly gaining attention in the information retrieval (IR) field, which retrieves documents by directly generating their identifiers. So far, much effort has been devoted to developing effective generative retrieval models. There has been less attention paid to the robustness perspective. When a new retrieval paradigm enters into the real-world application, it is also critical to measure the out-of-distribution (OOD) generalization, i.e., how would generative retrieval models generalize to new distributions. To answer this question, firstly, we define OOD robustness from three perspectives in retrieval problems: 1) The query variations; 2) The unforeseen query types; and 3) The unforeseen tasks. Based on this taxonomy, we conduct empirical studies to analyze the OOD robustness of several representative generative retrieval models against dense retrieval models. The empirical results indicate that the OOD robustness of generative retrieval models requires enhancement. We hope studying the OOD robustness of generative retrieval models would be advantageous to the IR community.
Abstract:Neural ranking models (NRMs) have attracted considerable attention in information retrieval. Unfortunately, NRMs may inherit the adversarial vulnerabilities of general neural networks, which might be leveraged by black-hat search engine optimization practitioners. Recently, adversarial attacks against NRMs have been explored in the paired attack setting, generating an adversarial perturbation to a target document for a specific query. In this paper, we focus on a more general type of perturbation and introduce the topic-oriented adversarial ranking attack task against NRMs, which aims to find an imperceptible perturbation that can promote a target document in ranking for a group of queries with the same topic. We define both static and dynamic settings for the task and focus on decision-based black-box attacks. We propose a novel framework to improve topic-oriented attack performance based on a surrogate ranking model. The attack problem is formalized as a Markov decision process (MDP) and addressed using reinforcement learning. Specifically, a topic-oriented reward function guides the policy to find a successful adversarial example that can be promoted in rankings to as many queries as possible in a group. Experimental results demonstrate that the proposed framework can significantly outperform existing attack strategies, and we conclude by re-iterating that there exist potential risks for applying NRMs in the real world.