Abstract:Time series forecasting under distribution shift remains challenging, as existing deep learning models often rely on local statistical normalization (e.g., mean and variance) that fails to capture global distribution shift. Methods like RevIN and its variants attempt to decouple distribution and pattern but still struggle with missing values, noisy observations, and invalid channel-wise affine transformation. To address these limitations, we propose Affine Prototype Timestamp (APT), a lightweight and flexible plug-in module that injects global distribution features into the normalization-forecasting pipeline. By leveraging timestamp conditioned prototype learning, APT dynamically generates affine parameters that modulate both input and output series, enabling the backbone to learn from self-supervised, distribution-aware clustered instances. APT is compatible with arbitrary forecasting backbones and normalization strategies while introducing minimal computational overhead. Extensive experiments across six benchmark datasets and multiple backbone-normalization combinations demonstrate that APT significantly improves forecasting performance under distribution shift.




Abstract:The advent of universal time series forecasting models has revolutionized zero-shot forecasting across diverse domains, yet the critical role of data diversity in training these models remains underexplored. Existing large-scale time series datasets often suffer from inherent biases and imbalanced distributions, leading to suboptimal model performance and generalization. To address this gap, we introduce BLAST, a novel pre-training corpus designed to enhance data diversity through a balanced sampling strategy. First, BLAST incorporates 321 billion observations from publicly available datasets and employs a comprehensive suite of statistical metrics to characterize time series patterns. Then, to facilitate pattern-oriented sampling, the data is implicitly clustered using grid-based partitioning. Furthermore, by integrating grid sampling and grid mixup techniques, BLAST ensures a balanced and representative coverage of diverse patterns. Experimental results demonstrate that models pre-trained on BLAST achieve state-of-the-art performance with a fraction of the computational resources and training tokens required by existing methods. Our findings highlight the pivotal role of data diversity in improving both training efficiency and model performance for the universal forecasting task.




Abstract:Recently, Transformers have gained traction in weather forecasting for their capability to capture long-term spatial-temporal correlations. However, their complex architectures result in large parameter counts and extended training times, limiting their practical application and scalability to global-scale forecasting. This paper aims to explore the key factor for accurate weather forecasting and design more efficient solutions. Interestingly, our empirical findings reveal that absolute positional encoding is what really works in Transformer-based weather forecasting models, which can explicitly model the spatial-temporal correlations even without attention mechanisms. We theoretically prove that its effectiveness stems from the integration of geographical coordinates and real-world time features, which are intrinsically related to the dynamics of weather. Based on this, we propose LightWeather, a lightweight and effective model for station-based global weather forecasting. We employ absolute positional encoding and a simple MLP in place of other components of Transformer. With under 30k parameters and less than one hour of training time, LightWeather achieves state-of-the-art performance on global weather datasets compared to other advanced DL methods. The results underscore the superiority of integrating spatial-temporal knowledge over complex architectures, providing novel insights for DL in weather forecasting.