Abstract:Test-time training adapts to a new test distribution on the fly by optimizing a model for each test input using self-supervision. In this paper, we use masked autoencoders for this one-sample learning problem. Empirically, our simple method improves generalization on many visual benchmarks for distribution shifts. Theoretically, we characterize this improvement in terms of the bias-variance trade-off.
Abstract:Many recent self-supervised frameworks for visual representation learning are based on certain forms of Siamese networks. Such networks are conceptually symmetric with two parallel encoders, but often practically asymmetric as numerous mechanisms are devised to break the symmetry. In this work, we conduct a formal study on the importance of asymmetry by explicitly distinguishing the two encoders within the network -- one produces source encodings and the other targets. Our key insight is keeping a relatively lower variance in target than source generally benefits learning. This is empirically justified by our results from five case studies covering different variance-oriented designs, and is aligned with our preliminary theoretical analysis on the baseline. Moreover, we find the improvements from asymmetric designs generalize well to longer training schedules, multiple other frameworks and newer backbones. Finally, the combined effect of several asymmetric designs achieves a state-of-the-art accuracy on ImageNet linear probing and competitive results on downstream transfer. We hope our exploration will inspire more research in exploiting asymmetry for Siamese representation learning.
Abstract:Dual encoders and cross encoders have been widely used for image-text retrieval. Between the two, the dual encoder encodes the image and text independently followed by a dot product, while the cross encoder jointly feeds image and text as the input and performs dense multi-modal fusion. These two architectures are typically modeled separately without interaction. In this work, we propose LoopITR, which combines them in the same network for joint learning. Specifically, we let the dual encoder provide hard negatives to the cross encoder, and use the more discriminative cross encoder to distill its predictions back to the dual encoder. Both steps are efficiently performed together in the same model. Our work centers on empirical analyses of this combined architecture, putting the main focus on the design of the distillation objective. Our experimental results highlight the benefits of training the two encoders in the same network, and demonstrate that distillation can be quite effective with just a few hard negative examples. Experiments on two standard datasets (Flickr30K and COCO) show our approach achieves state-of-the-art dual encoder performance when compared with approaches using a similar amount of data.
Abstract:In this work we present point-level region contrast, a self-supervised pre-training approach for the task of object detection. This approach is motivated by the two key factors in detection: localization and recognition. While accurate localization favors models that operate at the pixel- or point-level, correct recognition typically relies on a more holistic, region-level view of objects. Incorporating this perspective in pre-training, our approach performs contrastive learning by directly sampling individual point pairs from different regions. Compared to an aggregated representation per region, our approach is more robust to the change in input region quality, and further enables us to implicitly improve initial region assignments via online knowledge distillation during training. Both advantages are important when dealing with imperfect regions encountered in the unsupervised setting. Experiments show point-level region contrast improves on state-of-the-art pre-training methods for object detection and segmentation across multiple tasks and datasets, and we provide extensive ablation studies and visualizations to aid understanding. Code will be made available.
Abstract:This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.
Abstract:Object detection is a central downstream task used to test if pre-trained network parameters confer benefits, such as improved accuracy or training speed. The complexity of object detection methods can make this benchmarking non-trivial when new architectures, such as Vision Transformer (ViT) models, arrive. These difficulties (e.g., architectural incompatibility, slow training, high memory consumption, unknown training formulae, etc.) have prevented recent studies from benchmarking detection transfer learning with standard ViT models. In this paper, we present training techniques that overcome these challenges, enabling the use of standard ViT models as the backbone of Mask R-CNN. These tools facilitate the primary goal of our study: we compare five ViT initializations, including recent state-of-the-art self-supervised learning methods, supervised initialization, and a strong random initialization baseline. Our results show that recent masking-based unsupervised learning methods may, for the first time, provide convincing transfer learning improvements on COCO, increasing box AP up to 4% (absolute) over supervised and prior self-supervised pre-training methods. Moreover, these masking-based initializations scale better, with the improvement growing as model size increases.
Abstract:Non-contrastive methods of self-supervised learning (such as BYOL and SimSiam) learn representations by minimizing the distance between two views of the same image. These approaches have achieved remarkable performance in practice, but it is not well understood 1) why these methods do not collapse to the trivial solutions and 2) how the representation is learned. Tian el al. (2021) made an initial attempt on the first question and proposed DirectPred that sets the predictor directly. In our work, we analyze a generalized version of DirectPred, called DirectSet($\alpha$). We show that in a simple linear network, DirectSet($\alpha$) provably learns a desirable projection matrix and also reduces the sample complexity on downstream tasks. Our analysis suggests that weight decay acts as an implicit threshold that discard the features with high variance under augmentation, and keep the features with low variance. Inspired by our theory, we simplify DirectPred by removing the expensive eigen-decomposition step. On CIFAR-10, CIFAR-100, STL-10 and ImageNet, DirectCopy, our simpler and more computationally efficient algorithm, rivals or even outperforms DirectPred.
Abstract:This paper does not describe a novel method. Instead, it studies a straightforward, incremental, yet must-know baseline given the recent progress in computer vision: self-supervised learning for Vision Transformers (ViT). While the training recipes for standard convolutional networks have been highly mature and robust, the recipes for ViT are yet to be built, especially in the self-supervised scenarios where training becomes more challenging. In this work, we go back to basics and investigate the effects of several fundamental components for training self-supervised ViT. We observe that instability is a major issue that degrades accuracy, and it can be hidden by apparently good results. We reveal that these results are indeed partial failure, and they can be improved when training is made more stable. We benchmark ViT results in MoCo v3 and several other self-supervised frameworks, with ablations in various aspects. We discuss the currently positive evidence as well as challenges and open questions. We hope that this work will provide useful data points and experience for future research.
Abstract:Contrastive approaches to self-supervised learning (SSL) learn representations by minimizing the distance between two augmented views of the same data point (positive pairs) and maximizing the same from different data points (negative pairs). However, recent approaches like BYOL and SimSiam, show remarkable performance {\it without} negative pairs, raising a fundamental theoretical question: how can SSL with only positive pairs avoid representational collapse? We study the nonlinear learning dynamics of non-contrastive SSL in simple linear networks. Our analysis yields conceptual insights into how non-contrastive SSL methods learn, how they avoid representational collapse, and how multiple factors, like predictor networks, stop-gradients, exponential moving averages, and weight decay all come into play. Our simple theory recapitulates the results of real-world ablation studies in both STL-10 and ImageNet. Furthermore, motivated by our theory we propose a novel approach that \emph{directly} sets the predictor based on the statistics of its inputs. In the case of linear predictors, our approach outperforms gradient training of the predictor by $5\%$ and on ImageNet it performs comparably with more complex two-layer non-linear predictors that employ BatchNorm. Code is released in https://github.com/facebookresearch/luckmatters/tree/master/ssl.
Abstract:One of the most challenging question types in VQA is when answering the question requires outside knowledge not present in the image. In this work we study open-domain knowledge, the setting when the knowledge required to answer a question is not given/annotated, neither at training nor test time. We tap into two types of knowledge representations and reasoning. First, implicit knowledge which can be learned effectively from unsupervised language pre-training and supervised training data with transformer-based models. Second, explicit, symbolic knowledge encoded in knowledge bases. Our approach combines both - exploiting the powerful implicit reasoning of transformer models for answer prediction, and integrating symbolic representations from a knowledge graph, while never losing their explicit semantics to an implicit embedding. We combine diverse sources of knowledge to cover the wide variety of knowledge needed to solve knowledge-based questions. We show our approach, KRISP (Knowledge Reasoning with Implicit and Symbolic rePresentations), significantly outperforms state-of-the-art on OK-VQA, the largest available dataset for open-domain knowledge-based VQA. We show with extensive ablations that while our model successfully exploits implicit knowledge reasoning, the symbolic answer module which explicitly connects the knowledge graph to the answer vocabulary is critical to the performance of our method and generalizes to rare answers.