LMI
Abstract:Recently, a novel form of audio partial forgery has posed challenges to its forensics, requiring advanced countermeasures to detect subtle forgery manipulations within long-duration audio. However, existing countermeasures still serve a classification purpose and fail to perform meaningful analysis of the start and end timestamps of partial forgery segments. To address this challenge, we introduce a novel coarse-to-fine proposal refinement framework (CFPRF) that incorporates a frame-level detection network (FDN) and a proposal refinement network (PRN) for audio temporal forgery detection and localization. Specifically, the FDN aims to mine informative inconsistency cues between real and fake frames to obtain discriminative features that are beneficial for roughly indicating forgery regions. The PRN is responsible for predicting confidence scores and regression offsets to refine the coarse-grained proposals derived from the FDN. To learn robust discriminative features, we devise a difference-aware feature learning (DAFL) module guided by contrastive representation learning to enlarge the sensitive differences between different frames induced by minor manipulations. We further design a boundary-aware feature enhancement (BAFE) module to capture the contextual information of multiple transition boundaries and guide the interaction between boundary information and temporal features via a cross-attention mechanism. Extensive experiments show that our CFPRF achieves state-of-the-art performance on various datasets, including LAV-DF, ASVS2019PS, and HAD.
Abstract:Retrieval-Augmented Generation (RAG) is applied to solve hallucination problems and real-time constraints of large language models, but it also induces vulnerabilities against retrieval corruption attacks. Existing research mainly explores the unreliability of RAG in white-box and closed-domain QA tasks. In this paper, we aim to reveal the vulnerabilities of Retrieval-Enhanced Generative (RAG) models when faced with black-box attacks for opinion manipulation. We explore the impact of such attacks on user cognition and decision-making, providing new insight to enhance the reliability and security of RAG models. We manipulate the ranking results of the retrieval model in RAG with instruction and use these results as data to train a surrogate model. By employing adversarial retrieval attack methods to the surrogate model, black-box transfer attacks on RAG are further realized. Experiments conducted on opinion datasets across multiple topics show that the proposed attack strategy can significantly alter the opinion polarity of the content generated by RAG. This demonstrates the model's vulnerability and, more importantly, reveals the potential negative impact on user cognition and decision-making, making it easier to mislead users into accepting incorrect or biased information.
Abstract:Chest pain symptoms are highly prevalent in emergency departments (EDs), where acute aortic syndrome (AAS) is a catastrophic cardiovascular emergency with a high fatality rate, especially when timely and accurate treatment is not administered. However, current triage practices in the ED can cause up to approximately half of patients with AAS to have an initially missed diagnosis or be misdiagnosed as having other acute chest pain conditions. Subsequently, these AAS patients will undergo clinically inaccurate or suboptimal differential diagnosis. Fortunately, even under these suboptimal protocols, nearly all these patients underwent non-contrast CT covering the aorta anatomy at the early stage of differential diagnosis. In this study, we developed an artificial intelligence model (DeepAAS) using non-contrast CT, which is highly accurate for identifying AAS and provides interpretable results to assist in clinical decision-making. Performance was assessed in two major phases: a multi-center retrospective study (n = 20,750) and an exploration in real-world emergency scenarios (n = 137,525). In the multi-center cohort, DeepAAS achieved a mean area under the receiver operating characteristic curve of 0.958 (95% CI 0.950-0.967). In the real-world cohort, DeepAAS detected 109 AAS patients with misguided initial suspicion, achieving 92.6% (95% CI 76.2%-97.5%) in mean sensitivity and 99.2% (95% CI 99.1%-99.3%) in mean specificity. Our AI model performed well on non-contrast CT at all applicable early stages of differential diagnosis workflows, effectively reduced the overall missed diagnosis and misdiagnosis rate from 48.8% to 4.8% and shortened the diagnosis time for patients with misguided initial suspicion from an average of 681.8 (74-11,820) mins to 68.5 (23-195) mins. DeepAAS could effectively fill the gap in the current clinical workflow without requiring additional tests.
Abstract:A novel approach is given to overcome the computational challenges of the full-matrix Adaptive Gradient algorithm (Full AdaGrad) in stochastic optimization. By developing a recursive method that estimates the inverse of the square root of the covariance of the gradient, alongside a streaming variant for parameter updates, the study offers efficient and practical algorithms for large-scale applications. This innovative strategy significantly reduces the complexity and resource demands typically associated with full-matrix methods, enabling more effective optimization processes. Moreover, the convergence rates of the proposed estimators and their asymptotic efficiency are given. Their effectiveness is demonstrated through numerical studies.
Abstract:Predicting future trajectories of traffic agents accurately holds substantial importance in various applications such as autonomous driving. Previous methods commonly infer all future steps of an agent either recursively or simultaneously. However, the recursive strategy suffers from the accumulated error, while the simultaneous strategy overlooks the constraints among future steps, resulting in kinematically infeasible predictions. To address these issues, in this paper, we propose G2LTraj, a plug-and-play global-to-local generation approach for trajectory prediction. Specifically, we generate a series of global key steps that uniformly cover the entire future time range. Subsequently, the local intermediate steps between the adjacent key steps are recursively filled in. In this way, we prevent the accumulated error from propagating beyond the adjacent key steps. Moreover, to boost the kinematical feasibility, we not only introduce the spatial constraints among key steps but also strengthen the temporal constraints among the intermediate steps. Finally, to ensure the optimal granularity of key steps, we design a selectable granularity strategy that caters to each predicted trajectory. Our G2LTraj significantly improves the performance of seven existing trajectory predictors across the ETH, UCY and nuScenes datasets. Experimental results demonstrate its effectiveness. Code will be available at https://github.com/Zhanwei-Z/G2LTraj.
Abstract:Large Language Models (LLMs) have emerged as potent tools for advancing the United Nations' Sustainable Development Goals (SDGs). However, the attitudinal disparities between LLMs and humans towards these goals can pose significant challenges. This study conducts a comprehensive review and analysis of the existing literature on the attitudes of LLMs towards the 17 SDGs, emphasizing the comparison between their attitudes and support for each goal and those of humans. We examine the potential disparities, primarily focusing on aspects such as understanding and emotions, cultural and regional differences, task objective variations, and factors considered in the decision-making process. These disparities arise from the underrepresentation and imbalance in LLM training data, historical biases, quality issues, lack of contextual understanding, and skewed ethical values reflected. The study also investigates the risks and harms that may arise from neglecting the attitudes of LLMs towards the SDGs, including the exacerbation of social inequalities, racial discrimination, environmental destruction, and resource wastage. To address these challenges, we propose strategies and recommendations to guide and regulate the application of LLMs, ensuring their alignment with the principles and goals of the SDGs, and therefore creating a more just, inclusive, and sustainable future.
Abstract:The widespread use of pre-trained language models (PLMs) in natural language processing (NLP) has greatly improved performance outcomes. However, these models' vulnerability to adversarial attacks (e.g., camouflaged hints from drug dealers), particularly in the Chinese language with its rich character diversity/variation and complex structures, hatches vital apprehension. In this study, we propose a novel method, CHinese vAriatioN Graph Enhancement (CHANGE), to increase the robustness of PLMs against character variation attacks in Chinese content. CHANGE presents a novel approach for incorporating a Chinese character variation graph into the PLMs. Through designing different supplementary tasks utilizing the graph structure, CHANGE essentially enhances PLMs' interpretation of adversarially manipulated text. Experiments conducted in a multitude of NLP tasks show that CHANGE outperforms current language models in combating against adversarial attacks and serves as a valuable contribution to robust language model research. These findings contribute to the groundwork on robust language models and highlight the substantial potential of graph-guided pre-training strategies for real-world applications.
Abstract:Evaluating large language models (LLMs) is fundamental, particularly in the context of practical applications. Conventional evaluation methods, typically designed primarily for LLM development, yield numerical scores that ignore the user experience. Therefore, our study shifts the focus from model-centered to human-centered evaluation in the context of AI-powered writing assistance applications. Our proposed metric, termed ``Revision Distance,'' utilizes LLMs to suggest revision edits that mimic the human writing process. It is determined by counting the revision edits generated by LLMs. Benefiting from the generated revision edit details, our metric can provide a self-explained text evaluation result in a human-understandable manner beyond the context-independent score. Our results show that for the easy-writing task, ``Revision Distance'' is consistent with established metrics (ROUGE, Bert-score, and GPT-score), but offers more insightful, detailed feedback and better distinguishes between texts. Moreover, in the context of challenging academic writing tasks, our metric still delivers reliable evaluations where other metrics tend to struggle. Furthermore, our metric also holds significant potential for scenarios lacking reference texts.
Abstract:We present Sailor, a family of open language models ranging from 0.5B to 7B parameters, tailored for South-East Asian (SEA) languages. These models are continually pre-trained from Qwen1.5, a great language model for multilingual use cases. From Qwen1.5, Sailor models accept 200B to 400B tokens, primarily covering the languages of English, Chinese, Vietnamese, Thai, Indonesian, Malay, and Lao. The training leverages several techniques, including BPE dropout for improving the model robustness, aggressive data cleaning and deduplication, and small proxy models to optimize data mixture. Experimental results on four typical tasks indicate that Sailor models demonstrate strong performance across different benchmarks, including commonsense reasoning, question answering, reading comprehension and examination. Embracing the open-source spirit, we share our insights through this report to spark a wider interest in developing large language models for multilingual use cases.
Abstract:This paper addresses the challenge of object-centric layout generation under spatial constraints, seen in multiple domains including floorplan design process. The design process typically involves specifying a set of spatial constraints that include object attributes like size and inter-object relations such as relative positioning. Existing works, which typically represent objects as single nodes, lack the granularity to accurately model complex interactions between objects. For instance, often only certain parts of an object, like a room's right wall, interact with adjacent objects. To address this gap, we introduce a factor graph based approach with four latent variable nodes for each room, and a factor node for each constraint. The factor nodes represent dependencies among the variables to which they are connected, effectively capturing constraints that are potentially of a higher order. We then develop message-passing on the bipartite graph, forming a factor graph neural network that is trained to produce a floorplan that aligns with the desired requirements. Our approach is simple and generates layouts faithful to the user requirements, demonstrated by a large improvement in IOU scores over existing methods. Additionally, our approach, being inferential and accurate, is well-suited to the practical human-in-the-loop design process where specifications evolve iteratively, offering a practical and powerful tool for AI-guided design.