NUS
Abstract:Scaling test-time compute is crucial for enhancing the reasoning capabilities of large language models (LLMs). Existing approaches typically employ reinforcement learning (RL) to maximize a verifiable reward obtained at the end of reasoning traces. However, such methods optimize only the final performance under a large and fixed token budget, which hinders efficiency in both training and deployment. In this work, we present a novel framework, AnytimeReasoner, to optimize anytime reasoning performance, which aims to improve token efficiency and the flexibility of reasoning under varying token budget constraints. To achieve this, we truncate the complete thinking process to fit within sampled token budgets from a prior distribution, compelling the model to summarize the optimal answer for each truncated thinking for verification. This introduces verifiable dense rewards into the reasoning process, facilitating more effective credit assignment in RL optimization. We then optimize the thinking and summary policies in a decoupled manner to maximize the cumulative reward. Additionally, we introduce a novel variance reduction technique, Budget Relative Policy Optimization (BRPO), to enhance the robustness and efficiency of the learning process when reinforcing the thinking policy. Empirical results in mathematical reasoning tasks demonstrate that our method consistently outperforms GRPO across all thinking budgets under various prior distributions, enhancing both training and token efficiency.
Abstract:Claim verification is essential in combating misinformation, and large language models (LLMs) have recently emerged in this area as powerful tools for assessing the veracity of claims using external knowledge. Existing LLM-based methods for claim verification typically adopt a Decompose-Then-Verify paradigm, which involves decomposing complex claims into several independent sub-claims and verifying each sub-claim separately. However, this paradigm often introduces errors during the claim decomposition process. To mitigate these errors, we propose to develop the Chain-of-Thought (CoT)-Verify paradigm, which leverages LLM reasoning methods to generate CoT-verification paths for the original complex claim without requiring decompositions into sub-claims and separate verification stages. The CoT-Verify paradigm allows us to propose a natural fine-tuning method called Reasoning-CV to enhance the verification capabilities in LLMs. Reasoning-CV includes a supervised fine-tuning (SFT) stage and a self-improvement direct preference optimization (DPO) stage. Utilizing only an 8B pre-trained LLM, Reasoning-CV demonstrates superior knowledge-assisted claim verification performances compared to existing Decompose-Then-Verify methods, as well as powerful black-box LLMs such as GPT-4o+CoT and o1-preview. Our code is available.
Abstract:This paper studies the approximation and generalization abilities of score-based neural network generative models (SGMs) in estimating an unknown distribution $P_0$ from $n$ i.i.d. observations in $d$ dimensions. Assuming merely that $P_0$ is $\alpha$-sub-Gaussian, we prove that for any time step $t \in [t_0, n^{O(1)}]$, where $t_0 \geq O(\alpha^2n^{-2/d}\log n)$, there exists a deep ReLU neural network with width $\leq O(\log^3n)$ and depth $\leq O(n^{3/d}\log_2n)$ that can approximate the scores with $\tilde{O}(n^{-1})$ mean square error and achieve a nearly optimal rate of $\tilde{O}(n^{-1}t_0^{-d/2})$ for score estimation, as measured by the score matching loss. Our framework is universal and can be used to establish convergence rates for SGMs under milder assumptions than previous work. For example, assuming further that the target density function $p_0$ lies in Sobolev or Besov classes, with an appropriately early stopping strategy, we demonstrate that neural network-based SGMs can attain nearly minimax convergence rates up to logarithmic factors. Our analysis removes several crucial assumptions, such as Lipschitz continuity of the score function or a strictly positive lower bound on the target density.
Abstract:DeepSeek-R1-Zero has shown that reinforcement learning (RL) at scale can directly enhance the reasoning capabilities of LLMs without supervised fine-tuning. In this work, we critically examine R1-Zero-like training by analyzing its two core components: base models and RL. We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance. Our analysis reveals that DeepSeek-V3-Base already exhibit ''Aha moment'', while Qwen2.5 base models demonstrate strong reasoning capabilities even without prompt templates, suggesting potential pretraining biases. Additionally, we identify an optimization bias in Group Relative Policy Optimization (GRPO), which artificially increases response length (especially for incorrect outputs) during training. To address this, we introduce Dr. GRPO, an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Leveraging these insights, we present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model, establishing a new state-of-the-art. Our code is available at https://github.com/sail-sg/understand-r1-zero.
Abstract:Posterior Sampling for Reinforcement Learning (PSRL) is a well-known algorithm that augments model-based reinforcement learning (MBRL) algorithms with Thompson sampling. PSRL maintains posterior distributions of the environment transition dynamics and the reward function, which are intractable for tasks with high-dimensional state and action spaces. Recent works show that dropout, used in conjunction with neural networks, induces variational distributions that can approximate these posteriors. In this paper, we propose Event-based Variational Distributions for Exploration (EVaDE), which are variational distributions that are useful for MBRL, especially when the underlying domain is object-based. We leverage the general domain knowledge of object-based domains to design three types of event-based convolutional layers to direct exploration. These layers rely on Gaussian dropouts and are inserted between the layers of the deep neural network model to help facilitate variational Thompson sampling. We empirically show the effectiveness of EVaDE-equipped Simulated Policy Learning (EVaDE-SimPLe) on the 100K Atari game suite.
Abstract:We study methods for efficiently aligning large language models (LLMs) with human preferences given budgeted online feedback. We first formulate the LLM alignment problem in the frame of contextual dueling bandits. This formulation, subsuming recent paradigms such as online RLHF and online DPO, inherently quests for sample-efficient algorithms that incorporate online active exploration. Leveraging insights from bandit theory, we introduce a unified algorithm based on Thompson sampling and highlight its applications in two distinct LLM alignment scenarios. The practical agent that efficiently implements this algorithm, named SEA (Sample-Efficient Alignment), is empirically validated through extensive experiments across three model scales (1B, 2.8B, 6.9B) and three preference learning algorithms (DPO, IPO, SLiC). The results demonstrate that SEA achieves highly sample-efficient alignment with oracle's preferences, outperforming recent active exploration methods for LLMs. Additionally, we release the implementation of SEA together with an efficient codebase designed for online alignment of LLMs, aiming to accelerate future research in this field.
Abstract:Existing neural constructive solvers for routing problems have predominantly employed transformer architectures, conceptualizing the route construction as a set-to-sequence learning task. However, their efficacy has primarily been demonstrated on entirely random problem instances that inadequately capture real-world scenarios. In this paper, we introduce realistic Traveling Salesman Problem (TSP) scenarios relevant to industrial settings and derive the following insights: (1) The optimal next node (or city) to visit often lies within proximity to the current node, suggesting the potential benefits of biasing choices based on current locations. (2) Effectively solving the TSP requires robust tracking of unvisited nodes and warrants succinct grouping strategies. Building upon these insights, we propose integrating a learnable choice layer inspired by Hypernetworks to prioritize choices based on the current location, and a learnable approximate clustering algorithm inspired by the Expectation-Maximization algorithm to facilitate grouping the unvisited cities. Together, these two contributions form a hierarchical approach towards solving the realistic TSP by considering both immediate local neighbourhoods and learning an intermediate set of node representations. Our hierarchical approach yields superior performance compared to both classical and recent transformer models, showcasing the efficacy of the key designs.
Abstract:Graph Neural Networks often struggle with long-range information propagation and in the presence of heterophilous neighborhoods. We address both challenges with a unified framework that incorporates a clustering inductive bias into the message passing mechanism, using additional cluster-nodes. Central to our approach is the formulation of an optimal transport based implicit clustering objective function. However, the algorithm for solving the implicit objective function needs to be differentiable to enable end-to-end learning of the GNN. To facilitate this, we adopt an entropy regularized objective function and propose an iterative optimization process, alternating between solving for the cluster assignments and updating the node/cluster-node embeddings. Notably, our derived closed-form optimization steps are themselves simple yet elegant message passing steps operating seamlessly on a bipartite graph of nodes and cluster-nodes. Our clustering-based approach can effectively capture both local and global information, demonstrated by extensive experiments on both heterophilous and homophilous datasets.
Abstract:Documents that consist of diverse templates and exhibit complex spatial structures pose a challenge for document entity classification. We propose KNN-former, which incorporates a new kind of spatial bias in attention calculation based on the K-nearest-neighbor (KNN) graph of document entities. We limit entities' attention only to their local radius defined by the KNN graph. We also use combinatorial matching to address the one-to-one mapping property that exists in many documents, where one field has only one corresponding entity. Moreover, our method is highly parameter-efficient compared to existing approaches in terms of the number of trainable parameters. Despite this, experiments across various datasets show our method outperforms baselines in most entity types. Many real-world documents exhibit combinatorial properties which can be leveraged as inductive biases to improve extraction accuracy, but existing datasets do not cover these documents. To facilitate future research into these types of documents, we release a new ID document dataset that covers diverse templates and languages. We also release enhanced annotations for an existing dataset.
Abstract:Large Language Models (LLMs) work surprisingly well for some complex reasoning problems via chain-of-thought (CoT) or tree-of-thought (ToT), but the underlying reasons remain unclear. We seek to understand the performance of these methods by conducting experimental case studies and linking the outcomes to sample and computational complexity in machine learning. We found that if problems can be decomposed into a sequence of reasoning steps and learning to predict the next step has a low sample and computational complexity, explicitly outlining the reasoning chain with all necessary information for predicting the next step may improve performance. Conversely, for problems where predicting the next step is computationally hard, adopting ToT may yield better reasoning outcomes than attempting to formulate a short reasoning chain.