Abstract:The impact of Large Language Models (LLMs) has extended into literary domains. However, existing evaluation metrics prioritize mechanical accuracy over artistic expression and tend to overrate machine translation (MT) as being superior to experienced professional human translation. In the long run, this bias could result in a permanent decline in translation quality and cultural authenticity. In response to the urgent need for a specialized literary evaluation metric, we introduce LiTransProQA, a novel, reference-free, LLM-based question-answering framework designed specifically for literary translation evaluation. LiTransProQA uniquely integrates insights from professional literary translators and researchers, focusing on critical elements in literary quality assessment such as literary devices, cultural understanding, and authorial voice. Our extensive evaluation shows that while literary-finetuned XCOMET-XL yields marginal gains, LiTransProQA substantially outperforms current metrics, achieving up to 0.07 gain in correlation (ACC-EQ and Kendall's tau) and surpassing the best state-of-the-art metrics by over 15 points in adequacy assessments. Incorporating professional translator insights as weights further improves performance, highlighting the value of translator inputs. Notably, LiTransProQA approaches human-level evaluation performance comparable to trained linguistic annotators. It demonstrates broad applicability to open-source models such as LLaMA3.3-70b and Qwen2.5-32b, indicating its potential as an accessible and training-free literary evaluation metric and a valuable tool for evaluating texts that require local processing due to copyright or ethical considerations.
Abstract:The impact of Large Language Models (LLMs) has extended into literary domains. However, existing evaluation metrics prioritize mechanical accuracy over artistic expression and tend to overrate machine translation (MT) as being superior to experienced professional human translation. In the long run, this bias could result in a permanent decline in translation quality and cultural authenticity. In response to the urgent need for a specialized literary evaluation metric, we introduce TransProQA, a novel, reference-free, LLM-based question-answering (QA) framework designed specifically for literary translation evaluation. TransProQA uniquely integrates insights from professional literary translators and researchers, focusing on critical elements in literary quality assessment such as literary devices, cultural understanding, and authorial voice. Our extensive evaluation shows that while literary-finetuned XCOMET-XL yields marginal gains, TransProQA substantially outperforms current metrics, achieving up to 0.07 gain in correlation (ACC-EQ and Kendall's tau) and surpassing the best state-of-the-art (SOTA) metrics by over 15 points in adequacy assessments. Incorporating professional translator insights as weights further improves performance, highlighting the value of translator inputs. Notably, TransProQA approaches human-level evaluation performance comparable to trained linguistic annotators. It demonstrates broad applicability to open-source models such as LLaMA3.3-70b and Qwen2.5-32b, indicating its potential as an accessible and training-free literary evaluation metric and a valuable tool for evaluating texts that require local processing due to copyright or ethical considerations.
Abstract:Reasoning-enabled large language models (LLMs) have recently demonstrated impressive performance in complex logical and mathematical tasks, yet their effectiveness in evaluating natural language generation remains unexplored. This study systematically compares reasoning-based LLMs (DeepSeek-R1 and OpenAI o3) with their non-reasoning counterparts across machine translation (MT) and text summarization (TS) evaluation tasks. We evaluate eight models across three architectural categories, including state-of-the-art reasoning models, their distilled variants (ranging from 8B to 70B parameters), and equivalent conventional, non-reasoning LLMs. Our experiments on WMT23 and SummEval benchmarks reveal that the benefits of reasoning capabilities are highly model and task-dependent: while OpenAI o3-mini models show consistent performance improvements with increased reasoning intensity, DeepSeek-R1 underperforms compared to its non-reasoning variant, with exception to certain aspects of TS evaluation. Correlation analysis demonstrates that increased reasoning token usage positively correlates with evaluation quality in o3-mini models. Furthermore, our results show that distillation of reasoning capabilities maintains reasonable performance in medium-sized models (32B) but degrades substantially in smaller variants (8B). This work provides the first comprehensive assessment of reasoning LLMs for NLG evaluation and offers insights into their practical use.
Abstract:Evaluating the quality of generated text automatically remains a significant challenge. Conventional reference-based metrics have been shown to exhibit relatively weak correlation with human evaluations. Recent research advocates the use of large language models (LLMs) as source-based metrics for natural language generation (NLG) assessment. While promising, LLM-based metrics, particularly those using smaller models, still fall short in aligning with human judgments. In this work, we introduce ContrastScore, a contrastive evaluation metric designed to enable higher-quality, less biased, and more efficient assessment of generated text. We evaluate ContrastScore on two NLG tasks: machine translation and summarization. Experimental results show that ContrastScore consistently achieves stronger correlation with human judgments than both single-model and ensemble-based baselines. Notably, ContrastScore based on Qwen 3B and 0.5B even outperforms Qwen 7B, despite having only half as many parameters, demonstrating its efficiency. Furthermore, it effectively mitigates common evaluation biases such as length and likelihood preferences, resulting in more robust automatic evaluation.
Abstract:With the rise of generative AI, synthesizing figures from text captions becomes a compelling application. However, achieving high geometric precision and editability requires representing figures as graphics programs in languages like TikZ, and aligned training data (i.e., graphics programs with captions) remains scarce. Meanwhile, large amounts of unaligned graphics programs and captioned raster images are more readily available. We reconcile these disparate data sources by presenting TikZero, which decouples graphics program generation from text understanding by using image representations as an intermediary bridge. It enables independent training on graphics programs and captioned images and allows for zero-shot text-guided graphics program synthesis during inference. We show that our method substantially outperforms baselines that can only operate with caption-aligned graphics programs. Furthermore, when leveraging caption-aligned graphics programs as a complementary training signal, TikZero matches or exceeds the performance of much larger models, including commercial systems like GPT-4o. Our code, datasets, and select models are publicly available.
Abstract:Recent advancements in Large Language Model (LLM)-based Natural Language Generation evaluation have largely focused on single-example prompting, resulting in significant token overhead and computational inefficiencies. In this work, we introduce BatchGEMBA-MQM, a framework that integrates batched prompting with the GEMBA-MQM metric for machine translation evaluation. Our approach aggregates multiple translation examples into a single prompt, reducing token usage by 2-4 times (depending on the batch size) relative to single-example prompting. Furthermore, we propose a batching-aware prompt compression model that achieves an additional token reduction of 13-15% on average while also showing ability to help mitigate batching-induced quality degradation. Evaluations across several LLMs (GPT-4o, GPT-4o-mini, Mistral Small, Phi4, and CommandR7B) and varying batch sizes reveal that while batching generally negatively affects quality (but sometimes not substantially), prompt compression does not degrade further, and in some cases, recovers quality loss. For instance, GPT-4o retains over 90% of its baseline performance at a batch size of 4 when compression is applied, compared to a 44.6% drop without compression. We plan to release our code and trained models at https://github.com/NL2G/batchgemba to support future research in this domain.
Abstract:With the advent of large multimodal language models, science is now at a threshold of an AI-based technological transformation. Recently, a plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently. This includes all aspects of the research cycle, especially (1) searching for relevant literature; (2) generating research ideas and conducting experimentation; generating (3) text-based and (4) multimodal content (e.g., scientific figures and diagrams); and (5) AI-based automatic peer review. In this survey, we provide an in-depth overview over these exciting recent developments, which promise to fundamentally alter the scientific research process for good. Our survey covers the five aspects outlined above, indicating relevant datasets, methods and results (including evaluation) as well as limitations and scope for future research. Ethical concerns regarding shortcomings of these tools and potential for misuse (fake science, plagiarism, harms to research integrity) take a particularly prominent place in our discussion. We hope that our survey will not only become a reference guide for newcomers to the field but also a catalyst for new AI-based initiatives in the area of "AI4Science".
Abstract:Evaluating the quality of machine-generated natural language content is a challenging task in Natural Language Processing (NLP). Recently, large language models (LLMs) like GPT-4 have been employed for this purpose, but they are computationally expensive due to the extensive token usage required by complex evaluation prompts. In this paper, we propose a prompt optimization approach that uses a smaller, fine-tuned language model to compress input data for evaluation prompt, thus reducing token usage and computational cost when using larger LLMs for downstream evaluation. Our method involves a two-stage fine-tuning process: supervised fine-tuning followed by preference optimization to refine the model's outputs based on human preferences. We focus on Machine Translation (MT) evaluation and utilize the GEMBA-MQM metric as a starting point. Our results show a $2.37\times$ reduction in token usage without any loss in evaluation quality. This work makes state-of-the-art LLM-based metrics like GEMBA-MQM more cost-effective and efficient, enhancing their accessibility for broader use.
Abstract:Natural language explanations (NLEs) are commonly used to provide plausible free-text explanations of a model's reasoning about its predictions. However, recent work has questioned the faithfulness of NLEs, as they may not accurately reflect the model's internal reasoning process regarding its predicted answer. In contrast, highlight explanations -- input fragments identified as critical for the model's predictions -- exhibit measurable faithfulness, which has been incrementally improved through existing research. Building on this foundation, we propose G-Tex, a Graph-Guided Textual Explanation Generation framework designed to enhance the faithfulness of NLEs by leveraging highlight explanations. Specifically, highlight explanations are extracted as highly faithful cues representing the model's reasoning and are subsequently encoded through a graph neural network layer, which explicitly guides the NLE generation process. This alignment ensures that the generated explanations closely reflect the model's underlying reasoning. Experiments on T5 and BART using three reasoning datasets show that G-Tex improves NLE faithfulness by up to 17.59% compared to baseline methods. Additionally, G-Tex generates NLEs with greater semantic and lexical similarity to human-written ones. Human evaluations show that G-Tex can decrease redundant content and enhance the overall quality of NLEs. As our work introduces a novel method for explicitly guiding NLE generation to improve faithfulness, we hope it will serve as a stepping stone for addressing additional criteria for NLE and generated text overall.
Abstract:Multimodal large language models (LLMs) have demonstrated impressive capabilities in generating high-quality images from textual instructions. However, their performance in generating scientific images--a critical application for accelerating scientific progress--remains underexplored. In this work, we address this gap by introducing ScImage, a benchmark designed to evaluate the multimodal capabilities of LLMs in generating scientific images from textual descriptions. ScImage assesses three key dimensions of understanding: spatial, numeric, and attribute comprehension, as well as their combinations, focusing on the relationships between scientific objects (e.g., squares, circles). We evaluate five models, GPT-4o, Llama, AutomaTikZ, Dall-E, and StableDiffusion, using two modes of output generation: code-based outputs (Python, TikZ) and direct raster image generation. Additionally, we examine four different input languages: English, German, Farsi, and Chinese. Our evaluation, conducted with 11 scientists across three criteria (correctness, relevance, and scientific accuracy), reveals that while GPT-4o produces outputs of decent quality for simpler prompts involving individual dimensions such as spatial, numeric, or attribute understanding in isolation, all models face challenges in this task, especially for more complex prompts.