Abstract:Recent work on reinforcement learning with verifiable rewards (RLVR) has shown that large language models (LLMs) can be substantially improved using outcome-level verification signals, such as unit tests for code or exact-match checks for mathematics. In parallel, process supervision has long been explored as a way to shape the intermediate reasoning behaviour of LLMs, but existing approaches rely on neural judges to score chain-of-thought steps, leaving them vulnerable to opacity, bias, and reward hacking. To address this gap, we introduce Verifiable Process Reward Models (VPRMs), a reinforcement-learning framework in which intermediate reasoning steps are checked by deterministic, rule-based verifiers. We apply VPRMs to risk-of-bias assessment for medical evidence synthesis, a domain where guideline-defined criteria and rule-based decision paths enable programmatic verification of reasoning traces. Across multiple datasets, we find that VPRMs generate reasoning that adheres closely to domain rules and achieve substantially higher coherence between step-level decisions and final labels. Results show that VPRMs achieve up to 20% higher F1 than state-of-the-art models and 6.5% higher than verifiable outcome rewards, with substantial gains in evidence grounding and logical coherence.
Abstract:Face-voice association is widely studied in multimodal learning and is approached representing faces and voices with embeddings that are close for a same person and well separated from those of others. Previous work achieved this with loss functions. Recent advancements in classification have shown that the discriminative ability of embeddings can be strengthened by imposing maximum class separation as inductive bias. This technique has never been used in the domain of face-voice association, and this work aims at filling this gap. More specifically, we develop a method for face-voice association that imposes maximum class separation among multimodal representations of different speakers as an inductive bias. Through quantitative experiments we demonstrate the effectiveness of our approach, showing that it achieves SOTA performance on two task formulation of face-voice association. Furthermore, we carry out an ablation study to show that imposing inductive bias is most effective when combined with losses for inter-class orthogonality. To the best of our knowledge, this work is the first that applies and demonstrates the effectiveness of maximum class separation as an inductive bias in multimodal learning; it hence paves the way to establish a new paradigm.
Abstract:Large language models (LLMs) are widely used in knowledge-intensive applications but often generate factually incorrect responses. A promising approach to rectify these flaws is correcting LLMs using feedback. Therefore, in this paper, we introduce FactCorrector, a new post-hoc correction method that adapts across domains without retraining and leverages structured feedback about the factuality of the original response to generate a correction. To support rigorous evaluations of factuality correction methods, we also develop the VELI5 benchmark, a novel dataset containing systematically injected factual errors and ground-truth corrections. Experiments on VELI5 and several popular long-form factuality datasets show that the FactCorrector approach significantly improves factual precision while preserving relevance, outperforming strong baselines. We release our code at https://ibm.biz/factcorrector.
Abstract:In language models (LMs), intra-memory knowledge conflict largely arises when inconsistent information about the same event is encoded within the model's parametric knowledge. While prior work has primarily focused on resolving conflicts between a model's internal knowledge and external resources through approaches such as fine-tuning or knowledge editing, the problem of localizing conflicts that originate during pre-training within the model's internal representations remain unexplored. In this work, we design a framework based on mechanistic interpretability methods to identify where and how conflicting knowledge from the pre-training data is encoded within LMs. Our findings contribute to a growing body of evidence that specific internal components of a language model are responsible for encoding conflicting knowledge from pre-training, and we demonstrate how mechanistic interpretability methods can be leveraged to causally intervene in and control conflicting knowledge at inference time.
Abstract:The scientific community needs tools that help early-stage researchers effectively communicate their findings and innovations to the public. Although existing general-purpose Large Language Models (LLMs) can assist in this endeavor, they are not optimally aligned for it. To address this, we propose a framework for training LLMs to emulate the role of a science journalist that can be used by early-stage researchers to learn how to properly communicate their papers to the general public. We evaluate the usefulness of our trained LLM Journalists in leading conversations with both simulated and human researchers. %compared to the general-purpose ones. Our experiments indicate that LLMs trained using our framework ask more relevant questions that address the societal impact of research, prompting researchers to clarify and elaborate on their findings. In the user study, the majority of participants who interacted with our trained LLM Journalist appreciated it more than interacting with general-purpose LLMs.
Abstract:The rapid adoption of LLM-based conversational systems is already transforming the landscape of educational technology. However, the current state-of-the-art learning models do not take into account the student's affective states. Multiple studies in educational psychology support the claim that positive or negative emotional states can impact a student's learning capabilities. To bridge this gap, we present MathBuddy, an emotionally aware LLM-powered Math Tutor, which dynamically models the student's emotions and maps them to relevant pedagogical strategies, making the tutor-student conversation a more empathetic one. The student's emotions are captured from the conversational text as well as from their facial expressions. The student's emotions are aggregated from both modalities to confidently prompt our LLM Tutor for an emotionally-aware response. We have effectively evaluated our model using automatic evaluation metrics across eight pedagogical dimensions and user studies. We report a massive 23 point performance gain using the win rate and a 3 point gain at an overall level using DAMR scores which strongly supports our hypothesis of improving LLM-based tutor's pedagogical abilities by modeling students' emotions.
Abstract:Systematic reviews in medicine play a critical role in evidence-based decision-making by aggregating findings from multiple studies. A central bottleneck in automating this process is extracting numeric evidence and determining study-level conclusions for specific outcomes and comparisons. Prior work has framed this problem as a textual inference task by retrieving relevant content fragments and inferring conclusions from them. However, such approaches often rely on shallow textual cues and fail to capture the underlying numeric reasoning behind expert assessments. In this work, we conceptualise the problem as one of quantitative reasoning. Rather than inferring conclusions from surface text, we extract structured numerical evidence (e.g., event counts or standard deviations) and apply domain knowledge informed logic to derive outcome-specific conclusions. We develop a numeric reasoning system composed of a numeric data extraction model and an effect estimate component, enabling more accurate and interpretable inference aligned with the domain expert principles. We train the numeric data extraction model using different strategies, including supervised fine-tuning (SFT) and reinforcement learning (RL) with a new value reward model. When evaluated on the CochraneForest benchmark, our best-performing approach -- using RL to train a small-scale number extraction model -- yields up to a 21% absolute improvement in F1 score over retrieval-based systems and outperforms general-purpose LLMs of over 400B parameters by up to 9%. Our results demonstrate the promise of reasoning-driven approaches for automating systematic evidence synthesis.
Abstract:An important task in machine learning (ML) research is comparing prior work, which is often performed via ML leaderboards: a tabular overview of experiments with comparable conditions (e.g., same task, dataset, and metric). However, the growing volume of literature creates challenges in creating and maintaining these leaderboards. To ease this burden, researchers have developed methods to extract leaderboard entries from research papers for automated leaderboard curation. Yet, prior work varies in problem framing, complicating comparisons and limiting real-world applicability. In this position paper, we present the first overview of Automatic Leaderboard Generation (ALG) research, identifying fundamental differences in assumptions, scope, and output formats. We propose an ALG unified conceptual framework to standardise how the ALG task is defined. We offer ALG benchmarking guidelines, including recommendations for datasets and metrics that promote fair, reproducible evaluation. Lastly, we outline challenges and new directions for ALG, such as, advocating for broader coverage by including all reported results and richer metadata.




Abstract:Extracting scientific evidence from biomedical studies for clinical research questions (e.g., Does stem cell transplantation improve quality of life in patients with medically refractory Crohn's disease compared to placebo?) is a crucial step in synthesising biomedical evidence. In this paper, we focus on the task of document-level scientific evidence extraction for clinical questions with conflicting evidence. To support this task, we create a dataset called CochraneForest, leveraging forest plots from Cochrane systematic reviews. It comprises 202 annotated forest plots, associated clinical research questions, full texts of studies, and study-specific conclusions. Building on CochraneForest, we propose URCA (Uniform Retrieval Clustered Augmentation), a retrieval-augmented generation framework designed to tackle the unique challenges of evidence extraction. Our experiments show that URCA outperforms the best existing methods by up to 10.3% in F1 score on this task. However, the results also underscore the complexity of CochraneForest, establishing it as a challenging testbed for advancing automated evidence synthesis systems.




Abstract:Large language models (LLMs) have demonstrated vast capabilities on generative tasks in recent years, yet they struggle with guaranteeing the factual correctness of the generated content. This makes these models unreliable in realistic situations where factually accurate responses are expected. In this paper, we propose FactReasoner, a new factuality assessor that relies on probabilistic reasoning to assess the factuality of a long-form generated response. Specifically, FactReasoner decomposes the response into atomic units, retrieves relevant contexts for them from an external knowledge source, and constructs a joint probability distribution over the atoms and contexts using probabilistic encodings of the logical relationships (entailment, contradiction) between the textual utterances corresponding to the atoms and contexts. FactReasoner then computes the posterior probability of whether atomic units in the response are supported by the retrieved contexts. Our experiments on labeled and unlabeled benchmark datasets demonstrate clearly that FactReasoner improves considerably over state-of-the-art prompt-based approaches in terms of both factual precision and recall.