Abstract:Systematic reviews in medicine play a critical role in evidence-based decision-making by aggregating findings from multiple studies. A central bottleneck in automating this process is extracting numeric evidence and determining study-level conclusions for specific outcomes and comparisons. Prior work has framed this problem as a textual inference task by retrieving relevant content fragments and inferring conclusions from them. However, such approaches often rely on shallow textual cues and fail to capture the underlying numeric reasoning behind expert assessments. In this work, we conceptualise the problem as one of quantitative reasoning. Rather than inferring conclusions from surface text, we extract structured numerical evidence (e.g., event counts or standard deviations) and apply domain knowledge informed logic to derive outcome-specific conclusions. We develop a numeric reasoning system composed of a numeric data extraction model and an effect estimate component, enabling more accurate and interpretable inference aligned with the domain expert principles. We train the numeric data extraction model using different strategies, including supervised fine-tuning (SFT) and reinforcement learning (RL) with a new value reward model. When evaluated on the CochraneForest benchmark, our best-performing approach -- using RL to train a small-scale number extraction model -- yields up to a 21% absolute improvement in F1 score over retrieval-based systems and outperforms general-purpose LLMs of over 400B parameters by up to 9%. Our results demonstrate the promise of reasoning-driven approaches for automating systematic evidence synthesis.
Abstract:An important task in machine learning (ML) research is comparing prior work, which is often performed via ML leaderboards: a tabular overview of experiments with comparable conditions (e.g., same task, dataset, and metric). However, the growing volume of literature creates challenges in creating and maintaining these leaderboards. To ease this burden, researchers have developed methods to extract leaderboard entries from research papers for automated leaderboard curation. Yet, prior work varies in problem framing, complicating comparisons and limiting real-world applicability. In this position paper, we present the first overview of Automatic Leaderboard Generation (ALG) research, identifying fundamental differences in assumptions, scope, and output formats. We propose an ALG unified conceptual framework to standardise how the ALG task is defined. We offer ALG benchmarking guidelines, including recommendations for datasets and metrics that promote fair, reproducible evaluation. Lastly, we outline challenges and new directions for ALG, such as, advocating for broader coverage by including all reported results and richer metadata.
Abstract:Extracting scientific evidence from biomedical studies for clinical research questions (e.g., Does stem cell transplantation improve quality of life in patients with medically refractory Crohn's disease compared to placebo?) is a crucial step in synthesising biomedical evidence. In this paper, we focus on the task of document-level scientific evidence extraction for clinical questions with conflicting evidence. To support this task, we create a dataset called CochraneForest, leveraging forest plots from Cochrane systematic reviews. It comprises 202 annotated forest plots, associated clinical research questions, full texts of studies, and study-specific conclusions. Building on CochraneForest, we propose URCA (Uniform Retrieval Clustered Augmentation), a retrieval-augmented generation framework designed to tackle the unique challenges of evidence extraction. Our experiments show that URCA outperforms the best existing methods by up to 10.3% in F1 score on this task. However, the results also underscore the complexity of CochraneForest, establishing it as a challenging testbed for advancing automated evidence synthesis systems.
Abstract:Large language models (LLMs) have demonstrated vast capabilities on generative tasks in recent years, yet they struggle with guaranteeing the factual correctness of the generated content. This makes these models unreliable in realistic situations where factually accurate responses are expected. In this paper, we propose FactReasoner, a new factuality assessor that relies on probabilistic reasoning to assess the factuality of a long-form generated response. Specifically, FactReasoner decomposes the response into atomic units, retrieves relevant contexts for them from an external knowledge source, and constructs a joint probability distribution over the atoms and contexts using probabilistic encodings of the logical relationships (entailment, contradiction) between the textual utterances corresponding to the atoms and contexts. FactReasoner then computes the posterior probability of whether atomic units in the response are supported by the retrieved contexts. Our experiments on labeled and unlabeled benchmark datasets demonstrate clearly that FactReasoner improves considerably over state-of-the-art prompt-based approaches in terms of both factual precision and recall.
Abstract:With the advent of large multimodal language models, science is now at a threshold of an AI-based technological transformation. Recently, a plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently. This includes all aspects of the research cycle, especially (1) searching for relevant literature; (2) generating research ideas and conducting experimentation; generating (3) text-based and (4) multimodal content (e.g., scientific figures and diagrams); and (5) AI-based automatic peer review. In this survey, we provide an in-depth overview over these exciting recent developments, which promise to fundamentally alter the scientific research process for good. Our survey covers the five aspects outlined above, indicating relevant datasets, methods and results (including evaluation) as well as limitations and scope for future research. Ethical concerns regarding shortcomings of these tools and potential for misuse (fake science, plagiarism, harms to research integrity) take a particularly prominent place in our discussion. We hope that our survey will not only become a reference guide for newcomers to the field but also a catalyst for new AI-based initiatives in the area of "AI4Science".
Abstract:Natural Language Processing (NLP) is a dynamic, interdisciplinary field that integrates intellectual traditions from computer science, linguistics, social science, and more. Despite its established presence, the definition of what constitutes NLP research remains debated. In this work, we quantitatively investigate what constitutes NLP by examining research papers. For this purpose, we propose a taxonomy and introduce NLPContributions, a dataset of nearly $2k$ research paper abstracts, expertly annotated to identify scientific contributions and classify their types according to this taxonomy. We also propose a novel task to automatically identify these elements, for which we train a strong baseline on our dataset. We present experimental results from this task and apply our model to $\sim$$29k$ NLP research papers to analyze their contributions, aiding in the understanding of the nature of NLP research. Our findings reveal a rising involvement of machine learning in NLP since the early nineties, alongside a declining focus on adding knowledge about language or people; again, in post-2020, there has been a resurgence of focus on language and people. We hope this work will spark discussions on our community norms and inspire efforts to consciously shape the future.
Abstract:Large Language Models (LLMs) have ushered in a transformative era in Natural Language Processing (NLP), reshaping research and extending NLP's influence to other fields of study. However, there is little to no work examining the degree to which LLMs influence other research fields. This work empirically and systematically examines the influence and use of LLMs in fields beyond NLP. We curate $106$ LLMs and analyze $\sim$$148k$ papers citing LLMs to quantify their influence and reveal trends in their usage patterns. Our analysis reveals not only the increasing prevalence of LLMs in non-CS fields but also the disparities in their usage, with some fields utilizing them more frequently than others since 2018, notably Linguistics and Engineering together accounting for $\sim$$45\%$ of LLM citations. Our findings further indicate that most of these fields predominantly employ task-agnostic LLMs, proficient in zero or few-shot learning without requiring further fine-tuning, to address their domain-specific problems. This study sheds light on the cross-disciplinary impact of NLP through LLMs, providing a better understanding of the opportunities and challenges.
Abstract:Automating the creation of scientific diagrams from academic papers can significantly streamline the development of tutorials, presentations, and posters, thereby saving time and accelerating the process. Current text-to-image models struggle with generating accurate and visually appealing diagrams from long-context inputs. We propose SciDoc2Diagram, a task that extracts relevant information from scientific papers and generates diagrams, along with a benchmarking dataset, SciDoc2DiagramBench. We develop a multi-step pipeline SciDoc2Diagrammer that generates diagrams based on user intentions using intermediate code generation. We observed that initial diagram drafts were often incomplete or unfaithful to the source, leading us to develop SciDoc2Diagrammer-Multi-Aspect-Feedback (MAF), a refinement strategy that significantly enhances factual correctness and visual appeal and outperforms existing models on both automatic and human judgement.
Abstract:Health-related misinformation claims often falsely cite a credible biomedical publication as evidence, which superficially appears to support the false claim. The publication does not really support the claim, but a reader could believe it thanks to the use of logical fallacies. Here, we aim to detect and to highlight such fallacies, which requires carefully assessing the exact content of the misrepresented publications. To achieve this, we introduce MissciPlus, an extension of the fallacy detection dataset Missci. MissciPlus builds on Missci by grounding the applied fallacies in real-world passages from misrepresented studies. This creates a realistic test-bed for detecting and verbalizing these fallacies under real-world input conditions, and enables novel passage-retrieval tasks. MissciPlus is the first logical fallacy dataset which pairs the real-world misrepresented evidence with incorrect claims, identical to the input to evidence-based fact-checking models. With MissciPlus, we i) benchmark retrieval models in identifying passages that support claims only when fallacies are applied, ii) evaluate how well LLMs articulate fallacious reasoning from misrepresented scientific passages, and iii) assess the effectiveness of fact-checking models in refuting claims that misrepresent biomedical research. Our findings show that current fact-checking models struggle to use relevant passages from misrepresented publications to refute misinformation. Moreover, these passages can mislead LLMs into accepting false claims as true.
Abstract:This paper presents a shared task that we organized at the Foundations of Language Technology (FoLT) course in 2023/2024 at the Technical University of Darmstadt, which focuses on evaluating the output of Large Language Models (LLMs) in generating harmful answers to health-related clinical questions. We describe the task design considerations and report the feedback we received from the students. We expect the task and the findings reported in this paper to be relevant for instructors teaching natural language processing (NLP) and designing course assignments.