Alert button
Picture for Soham Ghosh

Soham Ghosh

Alert button

Video-Text Modeling with Zero-Shot Transfer from Contrastive Captioners

Dec 09, 2022
Shen Yan, Tao Zhu, Zirui Wang, Yuan Cao, Mi Zhang, Soham Ghosh, Yonghui Wu, Jiahui Yu

Figure 1 for Video-Text Modeling with Zero-Shot Transfer from Contrastive Captioners
Figure 2 for Video-Text Modeling with Zero-Shot Transfer from Contrastive Captioners
Figure 3 for Video-Text Modeling with Zero-Shot Transfer from Contrastive Captioners
Figure 4 for Video-Text Modeling with Zero-Shot Transfer from Contrastive Captioners

This work explores an efficient approach to establish a foundational video-text model for tasks including open-vocabulary video classification, text-to-video retrieval, video captioning and video question-answering. We present VideoCoCa that reuses a pretrained image-text contrastive captioner (CoCa) model and adapt it to video-text tasks with minimal extra training. While previous works adapt image-text models with various cross-frame fusion modules (for example, cross-frame attention layer or perceiver resampler) and finetune the modified architecture on video-text data, we surprisingly find that the generative attentional pooling and contrastive attentional pooling layers in the image-text CoCa design are instantly adaptable to ``flattened frame embeddings'', yielding a strong zero-shot transfer baseline for many video-text tasks. Specifically, the frozen image encoder of a pretrained image-text CoCa takes each video frame as inputs and generates \(N\) token embeddings per frame for totally \(T\) video frames. We flatten \(N \times T\) token embeddings as a long sequence of frozen video representation and apply CoCa's generative attentional pooling and contrastive attentional pooling on top. All model weights including pooling layers are directly loaded from an image-text CoCa pretrained model. Without any video or video-text data, VideoCoCa's zero-shot transfer baseline already achieves state-of-the-art results on zero-shot video classification on Kinetics 400/600/700, UCF101, HMDB51, and Charades, as well as zero-shot text-to-video retrieval on MSR-VTT and ActivityNet Captions. We also explore lightweight finetuning on top of VideoCoCa, and achieve strong results on video question-answering (iVQA, MSRVTT-QA, MSVD-QA) and video captioning (MSR-VTT, ActivityNet, Youcook2). Our approach establishes a simple and effective video-text baseline for future research.

* Technical report 
Viaarxiv icon

ExCL: Extractive Clip Localization Using Natural Language Descriptions

Apr 04, 2019
Soham Ghosh, Anuva Agarwal, Zarana Parekh, Alexander Hauptmann

Figure 1 for ExCL: Extractive Clip Localization Using Natural Language Descriptions
Figure 2 for ExCL: Extractive Clip Localization Using Natural Language Descriptions
Figure 3 for ExCL: Extractive Clip Localization Using Natural Language Descriptions

The task of retrieving clips within videos based on a given natural language query requires cross-modal reasoning over multiple frames. Prior approaches such as sliding window classifiers are inefficient, while text-clip similarity driven ranking-based approaches such as segment proposal networks are far more complicated. In order to select the most relevant video clip corresponding to the given text description, we propose a novel extractive approach that predicts the start and end frames by leveraging cross-modal interactions between the text and video - this removes the need to retrieve and re-rank multiple proposal segments. Using recurrent networks we encode the two modalities into a joint representation which is then used in different variants of start-end frame predictor networks. Through extensive experimentation and ablative analysis, we demonstrate that our simple and elegant approach significantly outperforms state of the art on two datasets and has comparable performance on a third.

* Accepted at NAACL 2019, Short Paper 
Viaarxiv icon

Concurrent Meta Reinforcement Learning

Mar 07, 2019
Emilio Parisotto, Soham Ghosh, Sai Bhargav Yalamanchi, Varsha Chinnaobireddy, Yuhuai Wu, Ruslan Salakhutdinov

Figure 1 for Concurrent Meta Reinforcement Learning
Figure 2 for Concurrent Meta Reinforcement Learning
Figure 3 for Concurrent Meta Reinforcement Learning
Figure 4 for Concurrent Meta Reinforcement Learning

State-of-the-art meta reinforcement learning algorithms typically assume the setting of a single agent interacting with its environment in a sequential manner. A negative side-effect of this sequential execution paradigm is that, as the environment becomes more and more challenging, and thus requiring more interaction episodes for the meta-learner, it needs the agent to reason over longer and longer time-scales. To combat the difficulty of long time-scale credit assignment, we propose an alternative parallel framework, which we name "Concurrent Meta-Reinforcement Learning" (CMRL), that transforms the temporal credit assignment problem into a multi-agent reinforcement learning one. In this multi-agent setting, a set of parallel agents are executed in the same environment and each of these "rollout" agents are given the means to communicate with each other. The goal of the communication is to coordinate, in a collaborative manner, the most efficient exploration of the shared task the agents are currently assigned. This coordination therefore represents the meta-learning aspect of the framework, as each agent can be assigned or assign itself a particular section of the current task's state space. This framework is in contrast to standard RL methods that assume that each parallel rollout occurs independently, which can potentially waste computation if many of the rollouts end up sampling the same part of the state space. Furthermore, the parallel setting enables us to define several reward sharing functions and auxiliary losses that are non-trivial to apply in the sequential setting. We demonstrate the effectiveness of our proposed CMRL at improving over sequential methods in a variety of challenging tasks.

Viaarxiv icon