Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for James Bailey

Dual Head Adversarial Training


Apr 22, 2021
Yujing Jiang, Xingjun Ma, Sarah Monazam Erfani, James Bailey


  Access Paper or Ask Questions

What Do Deep Nets Learn? Class-wise Patterns Revealed in the Input Space


Feb 06, 2021
Shihao Zhao, Xingjun Ma, Yisen Wang, James Bailey, Bo Li, Yu-Gang Jiang


  Access Paper or Ask Questions

Adversarial Interaction Attack: Fooling AI to Misinterpret Human Intentions


Jan 17, 2021
Nodens Koren, Qiuhong Ke, Yisen Wang, James Bailey, Xingjun Ma

* Preprint 

  Access Paper or Ask Questions

Unlearnable Examples: Making Personal Data Unexploitable


Jan 13, 2021
Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, Yisen Wang

* ICLR2021 Spotlight 

  Access Paper or Ask Questions

Neural Architecture Search via Combinatorial Multi-Armed Bandit


Jan 01, 2021
Hanxun Huang, Xingjun Ma, Sarah M. Erfani, James Bailey

* 10 pages, 7 figures 

  Access Paper or Ask Questions

Divide and Learn: A Divide and Conquer Approach for Predict+Optimize


Dec 04, 2020
Ali Ugur Guler, Emir Demirovic, Jeffrey Chan, James Bailey, Christopher Leckie, Peter J. Stuckey


  Access Paper or Ask Questions

MurTree: Optimal Classification Trees via Dynamic Programming and Search


Jul 24, 2020
Emir Demirović, Anna Lukina, Emmanuel Hebrard, Jeffrey Chan, James Bailey, Christopher Leckie, Kotagiri Ramamohanarao, Peter J. Stuckey


  Access Paper or Ask Questions

Reflection Backdoor: A Natural Backdoor Attack on Deep Neural Networks


Jul 13, 2020
Yunfei Liu, Xingjun Ma, James Bailey, Feng Lu

* Accepted by ECCV-2020 

  Access Paper or Ask Questions

Imbalanced Gradients: A New Cause of Overestimated Adversarial Robustness


Jun 30, 2020
Linxi Jiang, Xingjun Ma, Zejia Weng, James Bailey, Yu-Gang Jiang

* 17 pages, 7 figues 

  Access Paper or Ask Questions

Normalized Loss Functions for Deep Learning with Noisy Labels


Jun 24, 2020
Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Erfani, James Bailey

* Accepted to ICML 2020 

  Access Paper or Ask Questions

Adversarial Camouflage: Hiding Physical-World Attacks with Natural Styles


Mar 08, 2020
Ranjie Duan, Xingjun Ma, Yisen Wang, James Bailey, A. K. Qin, Yun Yang


  Access Paper or Ask Questions

Clean-Label Backdoor Attacks on Video Recognition Models


Mar 06, 2020
Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, Yu-Gang Jiang


  Access Paper or Ask Questions

Skip Connections Matter: On the Transferability of Adversarial Examples Generated with ResNets


Feb 14, 2020
Dongxian Wu, Yisen Wang, Shu-Tao Xia, James Bailey, Xingjun Ma

* ICLR 2020 conference paper (spotlight) 

  Access Paper or Ask Questions

Symmetric Cross Entropy for Robust Learning with Noisy Labels


Aug 16, 2019
Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, James Bailey

* ICCV2019 

  Access Paper or Ask Questions

Understanding Adversarial Attacks on Deep Learning Based Medical Image Analysis Systems


Jul 24, 2019
Xingjun Ma, Yuhao Niu, Lin Gu, Yisen Wang, Yitian Zhao, James Bailey, Feng Lu

* 15 pages, 10 figures 

  Access Paper or Ask Questions

FCC-GAN: A Fully Connected and Convolutional Net Architecture for GANs


May 27, 2019
Sukarna Barua, Sarah Monazam Erfani, James Bailey


  Access Paper or Ask Questions

Quality Evaluation of GANs Using Cross Local Intrinsic Dimensionality


May 02, 2019
Sukarna Barua, Xingjun Ma, Sarah Monazam Erfani, Michael E. Houle, James Bailey

* The first and original version of this paper was submitted to ICLR 2019 conference. Submission link: https://openreview.net/pdf?id=BJgYl205tQ 

  Access Paper or Ask Questions

Black-box Adversarial Attacks on Video Recognition Models


Apr 10, 2019
Linxi Jiang, Xingjun Ma, Shaoxiang Chen, James Bailey, Yu-Gang Jiang


  Access Paper or Ask Questions

Dimensionality-Driven Learning with Noisy Labels


Jul 31, 2018
Xingjun Ma, Yisen Wang, Michael E. Houle, Shuo Zhou, Sarah M. Erfani, Shu-Tao Xia, Sudanthi Wijewickrema, James Bailey

* In Proceedings of the International Conference on Machine Learning (ICML), 2018 

  Access Paper or Ask Questions

Learning Deep Hidden Nonlinear Dynamics from Aggregate Data


Jul 29, 2018
Yisen Wang, Bo Dai, Lingkai Kong, Sarah Monazam Erfani, James Bailey, Hongyuan Zha

* In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), 2018 

  Access Paper or Ask Questions

Iterative Learning with Open-set Noisy Labels


Mar 31, 2018
Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey, Hongyuan Zha, Le Song, Shu-Tao Xia

* CVPR2018-Spotlight 

  Access Paper or Ask Questions

Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality


Mar 14, 2018
Xingjun Ma, Bo Li, Yisen Wang, Sarah M. Erfani, Sudanthi Wijewickrema, Grant Schoenebeck, Dawn Song, Michael E. Houle, James Bailey


  Access Paper or Ask Questions

Online Cluster Validity Indices for Streaming Data


Jan 08, 2018
Masud Moshtaghi, James C. Bezdek, Sarah M. Erfani, Christopher Leckie, James Bailey


  Access Paper or Ask Questions

Providing Effective Real-time Feedback in Simulation-based Surgical Training


Jun 30, 2017
Xingjun Ma, Sudanthi Wijewickrema, Yun Zhou, Shuo Zhou, Stephen O'Leary, James Bailey

* To appear in Proceedings of the 20th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Quebec City, Canada, 2017 

  Access Paper or Ask Questions

Efficient Orthogonal Parametrisation of Recurrent Neural Networks Using Householder Reflections


Jun 13, 2017
Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, James Bailey

* 12 pages, 5 figures 

  Access Paper or Ask Questions

Adversarial Generation of Real-time Feedback with Neural Networks for Simulation-based Training


May 23, 2017
Xingjun Ma, Sudanthi Wijewickrema, Shuo Zhou, Yun Zhou, Zakaria Mhammedi, Stephen O'Leary, James Bailey

* Appeared in the Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, 2017 

  Access Paper or Ask Questions