Edge caching is an emerging technology that empowers caching units at edge nodes, allowing users to fetch contents of interest that have been pre-cached at the edge nodes. The key to pre-caching is to maximize the cache hit percentage for cached content without compromising users' privacy. In this letter, we propose a federated learning (FL) assisted edge caching scheme based on lightweight architecture denoising diffusion probabilistic model (LDPM). Our simulation results verify that our proposed scheme achieves a higher cache hit percentage compared to existing FL-based methods and baseline methods.