Abstract:Large language models (LLMs) have shown incredible proficiency in performing tasks that require semantic understanding of natural language instructions. Recently, many works have further expanded this capability to perceive multimodal audio and text inputs, but their capabilities are often limited to specific fine-tuned tasks such as automatic speech recognition and translation. We therefore develop SpeechVerse, a robust multi-task training and curriculum learning framework that combines pre-trained speech and text foundation models via a small set of learnable parameters, while keeping the pre-trained models frozen during training. The models are instruction finetuned using continuous latent representations extracted from the speech foundation model to achieve optimal zero-shot performance on a diverse range of speech processing tasks using natural language instructions. We perform extensive benchmarking that includes comparing our model performance against traditional baselines across several datasets and tasks. Furthermore, we evaluate the model's capability for generalized instruction following by testing on out-of-domain datasets, novel prompts, and unseen tasks. Our empirical experiments reveal that our multi-task SpeechVerse model is even superior to conventional task-specific baselines on 9 out of the 11 tasks.
Abstract:Recent advancements in audio-visual generative modeling have been propelled by progress in deep learning and the availability of data-rich benchmarks. However, the growth is not attributed solely to models and benchmarks. Universally accepted evaluation metrics also play an important role in advancing the field. While there are many metrics available to evaluate audio and visual content separately, there is a lack of metrics that offer a quantitative and interpretable measure of audio-visual synchronization for videos "in the wild". To address this gap, we first created a large scale human annotated dataset (100+ hrs) representing nine types of synchronization errors in audio-visual content and how human perceive them. We then developed a PEAVS (Perceptual Evaluation of Audio-Visual Synchrony) score, a novel automatic metric with a 5-point scale that evaluates the quality of audio-visual synchronization. We validate PEAVS using a newly generated dataset, achieving a Pearson correlation of 0.79 at the set level and 0.54 at the clip level when compared to human labels. In our experiments, we observe a relative gain 50% over a natural extension of Fr\'echet based metrics for Audio-Visual synchrony, confirming PEAVS efficacy in objectively modeling subjective perceptions of audio-visual synchronization for videos "in the wild".
Abstract:Conventional speech-to-text translation (ST) systems are trained on single-speaker utterances, and they may not generalize to real-life scenarios where the audio contains conversations by multiple speakers. In this paper, we tackle single-channel multi-speaker conversational ST with an end-to-end and multi-task training model, named Speaker-Turn Aware Conversational Speech Translation, that combines automatic speech recognition, speech translation and speaker turn detection using special tokens in a serialized labeling format. We run experiments on the Fisher-CALLHOME corpus, which we adapted by merging the two single-speaker channels into one multi-speaker channel, thus representing the more realistic and challenging scenario with multi-speaker turns and cross-talk. Experimental results across single- and multi-speaker conditions and against conventional ST systems, show that our model outperforms the reference systems on the multi-speaker condition, while attaining comparable performance on the single-speaker condition. We release scripts for data processing and model training.
Abstract:To translate speech for automatic dubbing, machine translation needs to be isochronous, i.e. translated speech needs to be aligned with the source in terms of speech durations. We introduce target factors in a transformer model to predict durations jointly with target language phoneme sequences. We also introduce auxiliary counters to help the decoder to keep track of the timing information while generating target phonemes. We show that our model improves translation quality and isochrony compared to previous work where the translation model is instead trained to predict interleaved sequences of phonemes and durations.
Abstract:Automatic dubbing (AD) is the task of translating the original speech in a video into target language speech. The new target language speech should satisfy isochrony; that is, the new speech should be time aligned with the original video, including mouth movements, pauses, hand gestures, etc. In this paper, we propose training a model that directly optimizes both the translation as well as the speech duration of the generated translations. We show that this system generates speech that better matches the timing of the original speech, compared to prior work, while simplifying the system architecture.
Abstract:Several recent studies have reported dramatic performance improvements in neural machine translation (NMT) by augmenting translation at inference time with fuzzy-matches retrieved from a translation memory (TM). However, these studies all operate under the assumption that the TMs available at test time are highly relevant to the testset. We demonstrate that for existing retrieval augmented translation methods, using a TM with a domain mismatch to the test set can result in substantially worse performance compared to not using a TM at all. We propose a simple method to expose fuzzy-match NMT systems during training and show that it results in a system that is much more tolerant (regaining up to 5.8 BLEU) to inference with TMs with domain mismatch. Also, the model is still competitive to the baseline when fed with suggestions from relevant TMs.
Abstract:We explore zero-shot adaptation, where a general-domain model has access to customer or domain specific parallel data at inference time, but not during training. We build on the idea of Retrieval Augmented Translation (RAT) where top-k in-domain fuzzy matches are found for the source sentence, and target-language translations of those fuzzy-matched sentences are provided to the translation model at inference time. We propose a novel architecture to control interactions between a source sentence and the top-k fuzzy target-language matches, and compare it to architectures from prior work. We conduct experiments in two language pairs (En-De and En-Fr) by training models on WMT data and testing them with five and seven multi-domain datasets, respectively. Our approach consistently outperforms the alternative architectures, improving BLEU across language pair, domain, and number k of fuzzy matches.
Abstract:A major open problem in neural machine translation (NMT) is the translation of idiomatic expressions, such as "under the weather". The meaning of these expressions is not composed by the meaning of their constituent words, and NMT models tend to translate them literally (i.e., word-by-word), which leads to confusing and nonsensical translations. Research on idioms in NMT is limited and obstructed by the absence of automatic methods for quantifying these errors. In this work, first, we propose a novel metric for automatically measuring the frequency of literal translation errors without human involvement. Equipped with this metric, we present controlled translation experiments with models trained in different conditions (with/without the test-set idioms) and across a wide range of (global and targeted) metrics and test sets. We explore the role of monolingual pretraining and find that it yields substantial targeted improvements, even without observing any translation examples of the test-set idioms. In our analysis, we probe the role of idiom context. We find that the randomly initialized models are more local or "myopic" as they are relatively unaffected by variations of the idiom context, unlike the pretrained ones.
Abstract:We hypothesize that existing sentence-level machine translation (MT) metrics become less effective when the human reference contains ambiguities. To verify this hypothesis, we present a very simple method for extending pretrained metrics to incorporate context at the document level. We apply our method to three popular metrics, BERTScore, Prism, and COMET, and to the reference free metric COMET-QE. We evaluate the extended metrics on the WMT 2021 metrics shared task using the provided MQM annotations. Our results show that the extended metrics outperform their sentence-level counterparts in about 85% of the tested conditions, when excluding results on low-quality human references. Additionally, we show that our document-level extension of COMET-QE dramatically improves its accuracy on discourse phenomena tasks, outperforming a dedicated baseline by up to 6.1%. Our experimental results support our initial hypothesis and show that a simple extension of the metrics permits them to take advantage of context to resolve ambiguities in the reference.
Abstract:Sockeye 3 is the latest version of the Sockeye toolkit for Neural Machine Translation (NMT). Now based on PyTorch, Sockeye 3 provides faster model implementations and more advanced features with a further streamlined codebase. This enables broader experimentation with faster iteration, efficient training of stronger and faster models, and the flexibility to move new ideas quickly from research to production. When running comparable models, Sockeye 3 is up to 126% faster than other PyTorch implementations on GPUs and up to 292% faster on CPUs. Sockeye 3 is open source software released under the Apache 2.0 license.