This work introduces Zambezi Voice, an open-source multilingual speech resource for Zambian languages. It contains two collections of datasets: unlabelled audio recordings of radio news and talk shows programs (160 hours) and labelled data (over 80 hours) consisting of read speech recorded from text sourced from publicly available literature books. The dataset is created for speech recognition but can be extended to multilingual speech processing research for both supervised and unsupervised learning approaches. To our knowledge, this is the first multilingual speech dataset created for Zambian languages. We exploit pretraining and cross-lingual transfer learning by finetuning the Wav2Vec2.0 large-scale multilingual pre-trained model to build end-to-end (E2E) speech recognition models for our baseline models. The dataset is released publicly under a Creative Commons BY-NC-ND 4.0 license and can be accessed via https://github.com/unza-speech-lab/zambezi-voice .
Neural machine translation (NMT) systems exhibit limited robustness in handling source-side linguistic variations. Their performance tends to degrade when faced with even slight deviations in language usage, such as different domains or variations introduced by second-language speakers. It is intuitive to extend this observation to encompass dialectal variations as well, but the work allowing the community to evaluate MT systems on this dimension is limited. To alleviate this issue, we compile and release \dataset, a contrastive dialectal benchmark encompassing 882 different variations from nine different languages. We also quantitatively demonstrate the challenges large MT models face in effectively translating dialectal variants. We are releasing all code and data.
We present BIG-C (Bemba Image Grounded Conversations), a large multimodal dataset for Bemba. While Bemba is the most populous language of Zambia, it exhibits a dearth of resources which render the development of language technologies or language processing research almost impossible. The dataset is comprised of multi-turn dialogues between Bemba speakers based on images, transcribed and translated into English. There are more than 92,000 utterances/sentences, amounting to more than 180 hours of audio data with corresponding transcriptions and English translations. We also provide baselines on speech recognition (ASR), machine translation (MT) and speech translation (ST) tasks, and sketch out other potential future multimodal uses of our dataset. We hope that by making the dataset available to the research community, this work will foster research and encourage collaboration across the language, speech, and vision communities especially for languages outside the "traditionally" used high-resourced ones. All data and code are publicly available: https://github.com/csikasote/bigc.
The wide accessibility of social media has provided linguistically under-represented communities with an extraordinary opportunity to create content in their native languages. This, however, comes with certain challenges in script normalization, particularly where the speakers of a language in a bilingual community rely on another script or orthography to write their native language. This paper addresses the problem of script normalization for several such languages that are mainly written in a Perso-Arabic script. Using synthetic data with various levels of noise and a transformer-based model, we demonstrate that the problem can be effectively remediated. We conduct a small-scale evaluation of real data as well. Our experiments indicate that script normalization is also beneficial to improve the performance of downstream tasks such as machine translation and language identification.
Despite the major advances in NLP, significant disparities in NLP system performance across languages still exist. Arguably, these are due to uneven resource allocation and sub-optimal incentives to work on less resourced languages. To track and further incentivize the global development of equitable language technology, we introduce GlobalBench. Prior multilingual benchmarks are static and have focused on a limited number of tasks and languages. In contrast, GlobalBench is an ever-expanding collection that aims to dynamically track progress on all NLP datasets in all languages. Rather than solely measuring accuracy, GlobalBench also tracks the estimated per-speaker utility and equity of technology across all languages, providing a multi-faceted view of how language technology is serving people of the world. Furthermore, GlobalBench is designed to identify the most under-served languages, and rewards research efforts directed towards those languages. At present, the most under-served languages are the ones with a relatively high population, but nonetheless overlooked by composite multilingual benchmarks (like Punjabi, Portuguese, and Wu Chinese). Currently, GlobalBench covers 966 datasets in 190 languages, and has 1,128 system submissions spanning 62 languages.
Knowing the language of an input text/audio is a necessary first step for using almost every natural language processing (NLP) tool such as taggers, parsers, or translation systems. Language identification is a well-studied problem, sometimes even considered solved; in reality, most of the world's 7000 languages are not supported by current systems. This lack of representation affects large-scale data mining efforts and further exacerbates data shortage for low-resource languages. We take a step towards tackling the data bottleneck by compiling a corpus of over 50K parallel children's stories in 350+ languages and dialects, and the computation bottleneck by building lightweight hierarchical models for language identification. Our data can serve as benchmark data for language identification of short texts and for understudied translation directions such as those between Indian or African languages. Our proposed method, Hierarchical LIMIT, uses limited computation to expand coverage into excluded languages while maintaining prediction quality.
This report describes GMU's sentiment analysis system for the SemEval-2023 shared task AfriSenti-SemEval. We participated in all three sub-tasks: Monolingual, Multilingual, and Zero-Shot. Our approach uses models initialized with AfroXLMR-large, a pre-trained multilingual language model trained on African languages and fine-tuned correspondingly. We also introduce augmented training data along with original training data. Alongside finetuning, we perform phylogeny-based adapter tuning to create several models and ensemble the best models for the final submission. Our system achieves the best F1-score on track 5: Amharic, with 6.2 points higher F1-score than the second-best performing system on this track. Overall, our system ranks 5th among the 10 systems participating in all 15 tracks.
The Perso-Arabic scripts are a family of scripts that are widely adopted and used by various linguistic communities around the globe. Identifying various languages using such scripts is crucial to language technologies and challenging in low-resource setups. As such, this paper sheds light on the challenges of detecting languages using Perso-Arabic scripts, especially in bilingual communities where ``unconventional'' writing is practiced. To address this, we use a set of supervised techniques to classify sentences into their languages. Building on these, we also propose a hierarchical model that targets clusters of languages that are more often confused by the classifiers. Our experiment results indicate the effectiveness of our solutions.
One of the major challenges that under-represented and endangered language communities face in language technology is the lack or paucity of language data. This is also the case of the Southern varieties of the Kurdish and Laki languages for which very limited resources are available with insubstantial progress in tools. To tackle this, we provide a few approaches that rely on the content of local news websites, a local radio station that broadcasts content in Southern Kurdish and fieldwork for Laki. In this paper, we describe some of the challenges of such under-represented languages, particularly in writing and standardization, and also, in retrieving sources of data and retro-digitizing handwritten content to create a corpus for Southern Kurdish and Laki. In addition, we study the task of language identification in light of the other variants of Kurdish and Zaza-Gorani languages.