Abstract:In the rapidly evolving domain of Artificial Intelligence (AI), the complex interaction between innovation and regulation has become an emerging focus of our society. Despite tremendous advancements in AI's capabilities to excel in specific tasks and contribute to diverse sectors, establishing a high degree of trust in AI-generated outputs and decisions necessitates meticulous caution and continuous oversight. A broad spectrum of stakeholders, including governmental bodies, private sector corporations, academic institutions, and individuals, have launched significant initiatives. These efforts include developing ethical guidelines for AI and engaging in vibrant discussions on AI ethics, both among AI practitioners and within the broader society. This article thoroughly analyzes the ground-breaking AI regulatory framework proposed by the European Union. It delves into the fundamental ethical principles of safety, transparency, non-discrimination, traceability, and environmental sustainability for AI developments and deployments. Considering the technical efforts and strategies undertaken by academics and industry to uphold these principles, we explore the synergies and conflicts among the five ethical principles. Through this lens, work presents a forward-looking perspective on the future of AI regulations, advocating for a harmonized approach that safeguards societal values while encouraging technological advancement.
Abstract:The increasing demand for intelligent assistants in human-populated environments has motivated significant research in autonomous robotic systems. Traditional service robots and virtual assistants, however, struggle with real-world task execution due to their limited capacity for dynamic reasoning and interaction, particularly when human collaboration is required. Recent developments in Large Language Models have opened new avenues for improving these systems, enabling more sophisticated reasoning and natural interaction capabilities. In this paper, we introduce AssistantX, an LLM-powered proactive assistant designed to operate autonomously in a physical office environment. Unlike conventional service robots, AssistantX leverages a novel multi-agent architecture, PPDR4X, which provides advanced inference capabilities and comprehensive collaboration awareness. By effectively bridging the gap between virtual operations and physical interactions, AssistantX demonstrates robust performance in managing complex real-world scenarios. Our evaluation highlights the architecture's effectiveness, showing that AssistantX can respond to clear instructions, actively retrieve supplementary information from memory, and proactively seek collaboration from team members to ensure successful task completion. More details and videos can be found at https://assistantx-agent.github.io/AssistantX/.
Abstract:Digital watermarking is the process of embedding secret information by altering images in a way that is undetectable to the human eye. To increase the robustness of the model, many deep learning-based watermarking methods use the encoder-decoder architecture by adding different noises to the noise layer. The decoder then extracts the watermarked information from the distorted image. However, this method can only resist weak noise attacks. To improve the robustness of the algorithm against stronger noise, this paper proposes to introduce a denoise module between the noise layer and the decoder. The module is aimed at reducing noise and recovering some of the information lost during an attack. Additionally, the paper introduces the SE module to fuse the watermarking information pixel-wise and channel dimensions-wise, improving the encoder's efficiency. Experimental results show that our proposed method is comparable to existing models and outperforms state-of-the-art under different noise intensities. In addition, ablation experiments show the superiority of our proposed module.
Abstract:Modern image processing tools have made it easy for attackers to crop the region or object of interest in images and paste it into other images. The challenge this cropping-paste attack poses to the watermarking technology is that it breaks the synchronization of the image watermark, introducing multiple superimposed desynchronization distortions, such as rotation, scaling, and translation. However, current watermarking methods can only resist a single type of desynchronization and cannot be applied to protect the object's copyright under the cropping-paste attack. With the finding that the key to resisting the cropping-paste attack lies in robust features of the object to protect, this paper proposes a self-synchronizing object-aligned watermarking method, called SSyncOA. Specifically, we first constrain the watermarked region to be aligned with the protected object, and then synchronize the watermark's translation, rotation, and scaling distortions by normalizing the object invariant features, i.e., its centroid, principal orientation, and minimum bounding square, respectively. To make the watermark embedded in the protected object, we introduce the object-aligned watermarking model, which incorporates the real cropping-paste attack into the encoder-noise layer-decoder pipeline and is optimized end-to-end. Besides, we illustrate the effect of different desynchronization distortions on the watermark training, which confirms the necessity of the self-synchronization process. Extensive experiments demonstrate the superiority of our method over other SOTAs.
Abstract:Embedding invisible hyperlinks or hidden codes in images to replace QR codes has become a hot topic recently. This technology requires first localizing the embedded region in the captured photos before decoding. Existing methods that train models to find the invisible embedded region struggle to obtain accurate localization results, leading to degraded decoding accuracy. This limitation is primarily because the CNN network is sensitive to low-frequency signals, while the embedded signal is typically in the high-frequency form. Based on this, this paper proposes a Dual-Branch Dual-Head (DBDH) neural network tailored for the precise localization of invisible embedded regions. Specifically, DBDH uses a low-level texture branch containing 62 high-pass filters to capture the high-frequency signals induced by embedding. A high-level context branch is used to extract discriminative features between the embedded and normal regions. DBDH employs a detection head to directly detect the four vertices of the embedding region. In addition, we introduce an extra segmentation head to segment the mask of the embedding region during training. The segmentation head provides pixel-level supervision for model learning, facilitating better learning of the embedded signals. Based on two state-of-the-art invisible offline-to-online messaging methods, we construct two datasets and augmentation strategies for training and testing localization models. Extensive experiments demonstrate the superior performance of the proposed DBDH over existing methods.
Abstract:Large Language Models (LLMs) are foundational to AI advancements, facilitating applications like predictive text generation. Nonetheless, they pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information from their vast datasets. Machine unlearning emerges as a cutting-edge solution to mitigate these concerns, offering techniques for LLMs to selectively discard certain data. This paper reviews the latest in machine unlearning for LLMs, introducing methods for the targeted forgetting of information to address privacy, ethical, and legal challenges without necessitating full model retraining. It divides existing research into unlearning from unstructured/textual data and structured/classification data, showcasing the effectiveness of these approaches in removing specific data while maintaining model efficacy. Highlighting the practicality of machine unlearning, this analysis also points out the hurdles in preserving model integrity, avoiding excessive or insufficient data removal, and ensuring consistent outputs, underlining the role of machine unlearning in advancing responsible, ethical AI.
Abstract:Analog/mixed-signal circuit design is one of the most complex and time-consuming stages in the whole chip design process. Due to various process, voltage, and temperature (PVT) variations from chip manufacturing, analog circuits inevitably suffer from performance degradation. Although there has been plenty of work on automating analog circuit design under the typical condition, limited research has been done on exploring robust designs under real and unpredictable silicon variations. Automatic analog design against variations requires prohibitive computation and time costs. To address the challenge, we present RobustAnalog, a robust circuit design framework that involves the variation information in the optimization process. Specifically, circuit optimizations under different variations are considered as a set of tasks. Similarities among tasks are leveraged and competitions are alleviated to realize a sample-efficient multi-task training. Moreover, RobustAnalog prunes the task space according to the current performance in each iteration, leading to a further simulation cost reduction. In this way, RobustAnalog can rapidly produce a set of circuit parameters that satisfies diverse constraints (e.g. gain, bandwidth, noise...) across variations. We compare RobustAnalog with Bayesian optimization, Evolutionary algorithm, and Deep Deterministic Policy Gradient (DDPG) and demonstrate that RobustAnalog can significantly reduce required optimization time by 14-30 times. Therefore, our study provides a feasible method to handle various real silicon conditions.
Abstract:Analog circuit sizing takes a significant amount of manual effort in a typical design cycle. With rapidly developing technology and tight schedules, bringing automated solutions for sizing has attracted great attention. This paper presents DNN-Opt, a Reinforcement Learning (RL) inspired Deep Neural Network (DNN) based black-box optimization framework for analog circuit sizing. The key contributions of this paper are a novel sample-efficient two-stage deep learning optimization framework leveraging RL actor-critic algorithms, and a recipe to extend it on large industrial circuits using critical device identification. Our method shows 5--30x sample efficiency compared to other black-box optimization methods both on small building blocks and on large industrial circuits with better performance metrics. To the best of our knowledge, this is the first application of DNN-based circuit sizing on industrial scale circuits.
Abstract:Automatic transistor sizing is a challenging problem in circuit design due to the large design space, complex performance trade-offs, and fast technological advancements. Although there has been plenty of work on transistor sizing targeting on one circuit, limited research has been done on transferring the knowledge from one circuit to another to reduce the re-design overhead. In this paper, we present GCN-RL Circuit Designer, leveraging reinforcement learning (RL) to transfer the knowledge between different technology nodes and topologies. Moreover, inspired by the simple fact that circuit is a graph, we learn on the circuit topology representation with graph convolutional neural networks (GCN). The GCN-RL agent extracts features of the topology graph whose vertices are transistors, edges are wires. Our learning-based optimization consistently achieves the highest Figures of Merit (FoM) on four different circuits compared with conventional black-box optimization methods (Bayesian Optimization, Evolutionary Algorithms), random search, and human expert designs. Experiments on transfer learning between five technology nodes and two circuit topologies demonstrate that RL with transfer learning can achieve much higher FoMs than methods without knowledge transfer. Our transferable optimization method makes transistor sizing and design porting more effective and efficient.