Abstract:Recently, Out-of-distribution (OOD) detection in dynamic graphs, which aims to identify whether incoming data deviates from the distribution of the in-distribution (ID) training set, has garnered considerable attention in security-sensitive fields. Current OOD detection paradigms primarily focus on static graphs and confront two critical challenges: i) high bias and high variance caused by single-point estimation, which makes the predictions sensitive to randomness in the data; ii) score homogenization resulting from the lack of OOD training data, where the model only learns ID-specific patterns, resulting in overall low OOD scores and a narrow score gap between ID and OOD data. To tackle these issues, we first investigate OOD detection in dynamic graphs through the lens of Evidential Deep Learning (EDL). Specifically, we propose EviSEC, an innovative and effective OOD detector via Evidential Spectrum-awarE Contrastive Learning. We design an evidential neural network to redefine the output as the posterior Dirichlet distribution, explaining the randomness of inputs through the uncertainty of distribution, which is overlooked by single-point estimation. Moreover, spectrum-aware augmentation module generates OOD approximations to identify patterns with high OOD scores, thereby widening the score gap between ID and OOD data and mitigating score homogenization. Extensive experiments on real-world datasets demonstrate that EviSAC effectively detects OOD samples in dynamic graphs.
Abstract:User identity linkage is a task of recognizing the identities of the same user across different social networks (SN). Previous works tackle this problem via estimating the pairwise similarity between identities from different SN, predicting the label of identity pairs or selecting the most relevant identity pair based on the similarity scores. However, most of these methods ignore the results of previously matched identities, which could contribute to the linkage in following matching steps. To address this problem, we convert user identity linkage into a sequence decision problem and propose a reinforcement learning model to optimize the linkage strategy from the global perspective. Our method makes full use of both the social network structure and the history matched identities, and explores the long-term influence of current matching on subsequent decisions. We conduct experiments on different types of datasets, the results show that our method achieves better performance than other state-of-the-art methods.