Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, Australia
Abstract:Psychological defenses are strategies, often automatic, that people use to manage distress. Rigid or overuse of defenses is negatively linked to mental health and shapes what speakers disclose and how they accept or resist help. However, defenses are complex and difficult to reliably measure, particularly in clinical dialogues. We introduce PsyDefConv, a dialogue corpus with help seeker utterances labeled for defense level, and DMRS Co-Pilot, a four-stage pipeline that provides evidence-based pre-annotations. The corpus contains 200 dialogues and 4709 utterances, including 2336 help seeker turns, with labeling and Cohen's kappa 0.639. In a counterbalanced study, the co-pilot reduced average annotation time by 22.4%. In expert review, it averaged 4.62 for evidence, 4.44 for clinical plausibility, and 4.40 for insight on a seven-point scale. Benchmarks with strong language models in zero-shot and fine-tuning settings demonstrate clear headroom, with the best macro F1-score around 30% and a tendency to overpredict mature defenses. Corpus analyses confirm that mature defenses are most common and reveal emotion-specific deviations. We will release the corpus, annotations, code, and prompts to support research on defensive functioning in language.
Abstract:Electronic health records (EHRs) are designed to synthesize diverse data types, including unstructured clinical notes, structured lab tests, and time-series visit data. Physicians draw on these multimodal and temporal sources of EHR data to form a comprehensive view of a patient's health, which is crucial for informed therapeutic decision-making. Yet, most predictive models fail to fully capture the interactions, redundancies, and temporal patterns across multiple data modalities, often focusing on a single data type or overlooking these complexities. In this paper, we present CURENet, a multimodal model (Combining Unified Representations for Efficient chronic disease prediction) that integrates unstructured clinical notes, lab tests, and patients' time-series data by utilizing large language models (LLMs) for clinical text processing and textual lab tests, as well as transformer encoders for longitudinal sequential visits. CURENet has been capable of capturing the intricate interaction between different forms of clinical data and creating a more reliable predictive model for chronic illnesses. We evaluated CURENet using the public MIMIC-III and private FEMH datasets, where it achieved over 94\% accuracy in predicting the top 10 chronic conditions in a multi-label framework. Our findings highlight the potential of multimodal EHR integration to enhance clinical decision-making and improve patient outcomes.
Abstract:Training large language models (LLMs) is fundamentally constrained by limited device memory and costly inter-device communication. Although pipeline parallelism alleviates memory pressure by partitioning models across devices, it incurs activation communication overhead that scales linearly with sequence length, limiting efficiency in long-context training. Recent weight-passing approaches (e.g., WeiPipe) mitigate this by transmitting model weights instead of activations, but suffer from redundant peer-to-peer (P2P) transfers and underutilized intra-node bandwidth. We propose TawPipe--topology-aware weight pipeline parallelism, which exploits hierarchical bandwidth in distributed clusters for improved communication efficiency. TawPipe: (i) groups devices based on topology to optimize intra-node collective and inter-node P2P communication; (ii) assigns each device a fixed shard of model weights and gradients, avoiding redundant transfers; and (iii) overlaps communication with computation to hide latency. Unlike global collective operations used in fully sharded data parallelism (FSDP), TawPipe confines most communication within node boundaries, significantly reducing cross-node traffic. Extensive experiments on up to 24 GPUs with LLaMA-style models show that TawPipe achieves superior throughput and scalability compared to state-of-the-art baselines.
Abstract:Multi-variate time series (MTS) forecasting is crucial for various applications. Existing methods have shown promising results owing to their strong ability to capture intra- and inter-variate dependencies. However, these methods often overlook lead-lag dependencies at multiple grouping scales, failing to capture hierarchical lead-lag effects in complex systems. To this end, we propose MillGNN, a novel \underline{g}raph \underline{n}eural \underline{n}etwork-based method that learns \underline{m}ult\underline{i}ple grouping scale \underline{l}ead-\underline{l}ag dependencies for MTS forecasting, which can comprehensively capture lead-lag effects considering variate-wise and group-wise dynamics and decays. Specifically, MillGNN introduces two key innovations: (1) a scale-specific lead-lag graph learning module that integrates cross-correlation coefficients and dynamic decaying features derived from real-time inputs and time lags to learn lead-lag dependencies for each scale, which can model evolving lead-lag dependencies with statistical interpretability and data-driven flexibility; (2) a hierarchical lead-lag message passing module that passes lead-lag messages at multiple grouping scales in a structured way to simultaneously propagate intra- and inter-scale lead-lag effects, which can capture multi-scale lead-lag effects with a balance of comprehensiveness and efficiency. Experimental results on 11 datasets demonstrate the superiority of MillGNN for long-term and short-term MTS forecasting, compared with 16 state-of-the-art methods.
Abstract:Phonetic Cloaking Replacement (PCR), defined as the deliberate use of homophonic or near-homophonic variants to hide toxic intent, has become a major obstacle to Chinese content moderation. While this problem is well-recognized, existing evaluations predominantly rely on rule-based, synthetic perturbations that ignore the creativity of real users. We organize PCR into a four-way surface-form taxonomy and compile \ours, a dataset of 500 naturally occurring, phonetically cloaked offensive posts gathered from the RedNote platform. Benchmarking state-of-the-art LLMs on this dataset exposes a serious weakness: the best model reaches only an F1-score of 0.672, and zero-shot chain-of-thought prompting pushes performance even lower. Guided by error analysis, we revisit a Pinyin-based prompting strategy that earlier studies judged ineffective and show that it recovers much of the lost accuracy. This study offers the first comprehensive taxonomy of Chinese PCR, a realistic benchmark that reveals current detectors' limits, and a lightweight mitigation technique that advances research on robust toxicity detection.
Abstract:Recent progress in large language models (LLMs) has enabled the development of autonomous web agents capable of navigating and interacting with real websites. However, evaluating such agents remains challenging due to the instability and inconsistency of existing benchmarks, which often rely on dynamic content or oversimplified simulations. In this work, we introduce WebArXiv, a static and time-invariant benchmark comprising 275 web-based tasks grounded in the arXiv platform. WebArXiv ensures reproducible and reliable evaluation by anchoring tasks in fixed web snapshots with deterministic ground truths and standardized action trajectories. Through behavioral analysis, we identify a common failure mode, Rigid History Reflection, where agents over-rely on fixed interaction histories. To address this, we propose a lightweight dynamic reflection mechanism that allows agents to selectively retrieve relevant past steps during decision-making. We evaluate ten state-of-the-art web agents on WebArXiv. Results demonstrate clear performance differences across agents and validate the effectiveness of our proposed reflection strategy.
Abstract:Text-to-video generation has significantly enriched content creation and holds the potential to evolve into powerful world simulators. However, modeling the vast spatiotemporal space remains computationally demanding, particularly when employing Transformers, which incur quadratic complexity in sequence processing and thus limit practical applications. Recent advancements in linear-time sequence modeling, particularly the Mamba architecture, offer a more efficient alternative. Nevertheless, its plain design limits its direct applicability to multi-modal and spatiotemporal video generation tasks. To address these challenges, we introduce M4V, a Multi-Modal Mamba framework for text-to-video generation. Specifically, we propose a multi-modal diffusion Mamba (MM-DiM) block that enables seamless integration of multi-modal information and spatiotemporal modeling through a multi-modal token re-composition design. As a result, the Mamba blocks in M4V reduce FLOPs by 45% compared to the attention-based alternative when generating videos at 768$\times$1280 resolution. Additionally, to mitigate the visual quality degradation in long-context autoregressive generation processes, we introduce a reward learning strategy that further enhances per-frame visual realism. Extensive experiments on text-to-video benchmarks demonstrate M4V's ability to produce high-quality videos while significantly lowering computational costs. Code and models will be publicly available at https://huangjch526.github.io/M4V_project.
Abstract:Recent advances in representation learning often rely on holistic, black-box embeddings that entangle multiple semantic components, limiting interpretability and generalization. These issues are especially critical in medical imaging. To address these limitations, we propose an Organ-Wise Tokenization (OWT) framework with a Token Group-based Reconstruction (TGR) training paradigm. Unlike conventional approaches that produce holistic features, OWT explicitly disentangles an image into separable token groups, each corresponding to a distinct organ or semantic entity. Our design ensures each token group encapsulates organ-specific information, boosting interpretability, generalization, and efficiency while allowing fine-grained control in downstream tasks. Experiments on CT and MRI datasets demonstrate the effectiveness of OWT in not only achieving strong image reconstruction and segmentation performance, but also enabling novel semantic-level generation and retrieval applications that are out of reach for standard holistic embedding methods. These findings underscore the potential of OWT as a foundational framework for semantically disentangled representation learning, offering broad scalability and applicability to real-world medical imaging scenarios and beyond.
Abstract:Text-based games provide valuable environments for language-based autonomous agents. However, planning-then-learning paradigms, such as those combining Monte Carlo Tree Search (MCTS) and reinforcement learning (RL), are notably time-consuming due to extensive iterations. Additionally, these algorithms perform uncertainty-driven exploration but lack language understanding and reasoning abilities. In this paper, we introduce the Monte Carlo planning with Dynamic Memory-guided Large language model (MC-DML) algorithm. MC-DML leverages the language understanding and reasoning capabilities of Large Language Models (LLMs) alongside the exploratory advantages of tree search algorithms. Specifically, we enhance LLMs with in-trial and cross-trial memory mechanisms, enabling them to learn from past experiences and dynamically adjust action evaluations during planning. We conduct experiments on a series of text-based games from the Jericho benchmark. Our results demonstrate that the MC-DML algorithm significantly enhances performance across various games at the initial planning phase, outperforming strong contemporary methods that require multiple iterations. This demonstrates the effectiveness of our algorithm, paving the way for more efficient language-grounded planning in complex environments.
Abstract:Accurate tumor segmentation is crucial for cancer diagnosis and treatment. While foundation models have advanced general-purpose segmentation, existing methods still struggle with: (1) limited incorporation of medical priors, (2) imbalance between generic and tumor-specific features, and (3) high computational costs for clinical adaptation. To address these challenges, we propose MAST-Pro (Mixture-of-experts for Adaptive Segmentation of pan-Tumors with knowledge-driven Prompts), a novel framework that integrates dynamic Mixture-of-Experts (D-MoE) and knowledge-driven prompts for pan-tumor segmentation. Specifically, text and anatomical prompts provide domain-specific priors, guiding tumor representation learning, while D-MoE dynamically selects experts to balance generic and tumor-specific feature learning, improving segmentation accuracy across diverse tumor types. To enhance efficiency, we employ Parameter-Efficient Fine-Tuning (PEFT), optimizing MAST-Pro with significantly reduced computational overhead. Experiments on multi-anatomical tumor datasets demonstrate that MAST-Pro outperforms state-of-the-art approaches, achieving up to a 5.20% improvement in average DSC while reducing trainable parameters by 91.04%, without compromising accuracy.