Traditional model-based image reconstruction (MBIR) methods combine forward and noise models with simple object priors. Recent application of deep learning methods for image reconstruction provides a successful data-driven approach to addressing the challenges when reconstructing images with undersampled measurements or various types of noise. In this work, we propose a hybrid supervised-unsupervised learning framework for X-ray computed tomography (CT) image reconstruction. The proposed learning formulation leverages both sparsity or unsupervised learning-based priors and neural network reconstructors to simulate a fixed-point iteration process. Each proposed trained block consists of a deterministic MBIR solver and a neural network. The information flows in parallel through these two reconstructors and is then optimally combined. Multiple such blocks are cascaded to form a reconstruction pipeline. We demonstrate the efficacy of this learned hybrid model for low-dose CT image reconstruction with limited training data, where we use the NIH AAPM Mayo Clinic Low Dose CT Grand Challenge dataset for training and testing. In our experiments, we study combinations of supervised deep network reconstructors and MBIR solver with learned sparse representation-based priors or analytical priors. Our results demonstrate the promising performance of the proposed framework compared to recent low-dose CT reconstruction methods.
Dialogue state tracking (DST) plays an important role in task-oriented dialogue systems. However, collecting a large amount of turn-by-turn annotated dialogue data is costly and inefficient. In this paper, we propose a novel turn-level active learning framework for DST to actively select turns in dialogues to annotate. Given the limited labelling budget, experimental results demonstrate the effectiveness of selective annotation of dialogue turns. Additionally, our approach can effectively achieve comparable DST performance to traditional training approaches with significantly less annotated data, which provides a more efficient way to annotate new dialogue data.
Continual learning (CL) is a paradigm that aims to replicate the human ability to learn and accumulate knowledge continually without forgetting previous knowledge and transferring it to new tasks. Recent instruction tuning (IT) involves fine-tuning models to make them more adaptable to solving NLP tasks in general. However, it is still uncertain how instruction tuning works in the context of CL tasks. This challenging yet practical problem is formulated as Continual Instruction Tuning (CIT). In this work, we establish a CIT benchmark consisting of learning and evaluation protocols. We curate two long dialogue task streams of different types, InstrDialog and InstrDialog++, to study various CL methods systematically. Our experiments show that existing CL methods do not effectively leverage the rich natural language instructions, and fine-tuning an instruction-tuned model sequentially can yield similar or better results. We further explore different aspects that might affect the learning of CIT. We hope this benchmark will facilitate more research in this direction.
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at https://github.com/hyintell/awesome-refreshing-llms
Numerical weather prediction (NWP) may be inaccurate or biased due to incomplete atmospheric physical processes, insufficient spatial-temporal resolution, and inherent uncertainty of weather. Previous studies have attempted to correct biases by using handcrafted features and domain knowledge, or by applying general machine learning models naively. They do not fully explore the complicated meteorologic interactions and spatial dependencies in the atmosphere dynamically, which limits their applicability in NWP bias-correction. Specifically, weather factors interact with each other in complex ways, and these interactions can vary regionally. In addition, the interactions between weather factors are further complicated by the spatial dependencies between regions, which are influenced by varied terrain and atmospheric motions. To address these issues, we propose WeatherGNN, an NWP bias-correction method that utilizes Graph Neural Networks (GNN) to learn meteorologic and geographic relationships in a unified framework. Our approach includes a factor-wise GNN that captures meteorological interactions within each grid (a specific location) adaptively, and a fast hierarchical GNN that captures spatial dependencies between grids dynamically. Notably, the fast hierarchical GNN achieves linear complexity with respect to the number of grids, enhancing model efficiency and scalability. Our experimental results on two real-world datasets demonstrate the superiority of WeatherGNN in comparison with other SOTA methods, with an average improvement of 40.50\% on RMSE compared to the original NWP.
Reconstructing 3D clothed human avatars from single images is a challenging task, especially when encountering complex poses and loose clothing. Current methods exhibit limitations in performance, largely attributable to their dependence on insufficient 2D image features and inconsistent query methods. Owing to this, we present the Global-correlated 3D-decoupling Transformer for clothed Avatar reconstruction (GTA), a novel transformer-based architecture that reconstructs clothed human avatars from monocular images. Our approach leverages transformer architectures by utilizing a Vision Transformer model as an encoder for capturing global-correlated image features. Subsequently, our innovative 3D-decoupling decoder employs cross-attention to decouple tri-plane features, using learnable embeddings as queries for cross-plane generation. To effectively enhance feature fusion with the tri-plane 3D feature and human body prior, we propose a hybrid prior fusion strategy combining spatial and prior-enhanced queries, leveraging the benefits of spatial localization and human body prior knowledge. Comprehensive experiments on CAPE and THuman2.0 datasets illustrate that our method outperforms state-of-the-art approaches in both geometry and texture reconstruction, exhibiting high robustness to challenging poses and loose clothing, and producing higher-resolution textures. Codes will be available at https://github.com/River-Zhang/GTA.
As the size of models and datasets grows, it has become increasingly common to train models in parallel. However, existing distributed stochastic gradient descent (SGD) algorithms suffer from insufficient utilization of computational resources and poor convergence in heterogeneous clusters. In this paper, we propose a delayed synchronous SGD algorithm with adaptive batch size (ABS-SGD) for heterogeneous GPU clusters. In ABS-SGD, workers perform global synchronization to accumulate delayed gradients and use the accumulated delayed gradients to update parameters. While workers are performing global synchronization for delayed gradients, they perform the computation of the next batch without specifying batch size in advance, which lasts until the next global synchronization starts, realizing the full utilization of computational resources. Since the gradient delay is only one iteration, the stale gradient problem can be alleviated. We theoretically prove the convergence of ABS-SGD in heterogeneous clusters. Extensive experiments in three types of heterogeneous clusters demonstrate that ABS-SGD can make full use of computational resources and accelerate model convergence: When training ResNet18 network with 4 workers, ABS-SGD increases the convergence speed by 1.30x on average compared with the best baseline algorithm.
This work considers the problem of heterogeneous graph-level anomaly detection. Heterogeneous graphs are commonly used to represent behaviours between different types of entities in complex industrial systems for capturing as much information about the system operations as possible. Detecting anomalous heterogeneous graphs from a large set of system behaviour graphs is crucial for many real-world applications like online web/mobile service and cloud access control. To address the problem, we propose HRGCN, an unsupervised deep heterogeneous graph neural network, to model complex heterogeneous relations between different entities in the system for effectively identifying these anomalous behaviour graphs. HRGCN trains a hierarchical relation-augmented Heterogeneous Graph Neural Network (HetGNN), which learns better graph representations by modelling the interactions among all the system entities and considering both source-to-destination entity (node) types and their relation (edge) types. Extensive evaluation on two real-world application datasets shows that HRGCN outperforms state-of-the-art competing anomaly detection approaches. We further present a real-world industrial case study to justify the effectiveness of HRGCN in detecting anomalous (e.g., congested) network devices in a mobile communication service. HRGCN is available at https://github.com/jiaxililearn/HRGCN.
The remarkable multimodal capabilities demonstrated by OpenAI's GPT-4 have sparked significant interest in the development of multimodal Large Language Models (LLMs). A primary research objective of such models is to align visual and textual modalities effectively while comprehending human instructions. Current methodologies often rely on annotations derived from benchmark datasets to construct image-dialogue datasets for training purposes, akin to instruction tuning in LLMs. However, these datasets often exhibit domain bias, potentially constraining the generative capabilities of the models. In an effort to mitigate these limitations, we propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning. This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models to yield a diverse and controllable dataset with varied image content. This not only provides greater flexibility compared to existing methodologies but also significantly enhances several model capabilities. Our research includes comprehensive experiments conducted on various datasets using the open-source LLAVA model as a testbed for our proposed pipeline. Our results underscore marked enhancements across more than ten commonly assessed capabilities,
Anomaly detection based on system logs plays an important role in intelligent operations, which is a challenging task due to the extremely complex log patterns. Existing methods detect anomalies by capturing the sequential dependencies in log sequences, which ignore the interactions of subsequences. To this end, we propose CSCLog, a Component Subsequence Correlation-Aware Log anomaly detection method, which not only captures the sequential dependencies in subsequences, but also models the implicit correlations of subsequences. Specifically, subsequences are extracted from log sequences based on components and the sequential dependencies in subsequences are captured by Long Short-Term Memory Networks (LSTMs). An implicit correlation encoder is introduced to model the implicit correlations of subsequences adaptively. In addition, Graph Convolution Networks (GCNs) are employed to accomplish the information interactions of subsequences. Finally, attention mechanisms are exploited to fuse the embeddings of all subsequences. Extensive experiments on four publicly available log datasets demonstrate the effectiveness of CSCLog, outperforming the best baseline by an average of 7.41% in Macro F1-Measure.