Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:In multiple classification, one aims to determine whether a testing sequence is generated from the same distribution as one of the M training sequences or not. Unlike most of existing studies that focus on discrete-valued sequences with perfect distribution match, we study multiple classification for continuous sequences with distribution uncertainty, where the generating distributions of the testing and training sequences deviate even under the true hypothesis. In particular, we propose distribution free tests and prove that the error probabilities of our tests decay exponentially fast for three different test designs: fixed-length, sequential, and two-phase tests. We first consider the simple case without the null hypothesis, where the testing sequence is known to be generated from a distribution close to the generating distribution of one of the training sequences. Subsequently, we generalize our results to a more general case with the null hypothesis by allowing the testing sequence to be generated from a distribution that is vastly different from the generating distributions of all training sequences.

Via

Abstract:In the ride-hailing industry, subsidies are predominantly employed to incentivize consumers to place more orders, thereby fostering market growth. Causal inference techniques are employed to estimate the consumer elasticity with different subsidy levels. However, the presence of confounding effects poses challenges in achieving an unbiased estimate of the uplift effect. We introduce a consumer subsidizing system to capture relationships between subsidy propensity and the treatment effect, which proves effective while maintaining a lightweight online environment.

Via

Abstract:Motivated by diverse secure requirements of multi-user in UAV systems, we propose a collaborative secret and covert transmission method for multi-antenna ground users to unmanned aerial vehicle (UAV) communications. Specifically, based on the power domain non-orthogonal multiple access (NOMA), two ground users with distinct security requirements, named Bob and Carlo, superimpose their signals and transmit the combined signal to the UAV named Alice. An adversary Willie attempts to simultaneously eavesdrop Bob's confidential message and detect whether Carlo is transmitting or not. We derive close-form expressions of the secrecy connection probability (SCP) and the covert connection probability (CCP) to evaluate the link reliability for wiretap and covert transmissions, respectively. Furthermore, we bound the secrecy outage probability (SOP) from Bob to Alice and the detection error probability (DEP) of Willie to evaluate the link security for wiretap and covert transmissions, respectively. To characterize the theoretical benchmark of the above model, we formulate a weighted multi-objective optimization problem to maximize the average of secret and covert transmission rates subject to constraints SOP, DEP, the beamformers of Bob and Carlo, and UAV trajectory parameters. To solve the optimization problem, we propose an iterative optimization algorithm using successive convex approximation and block coordinate descent (SCA-BCD) methods. Our results reveal the influence of design parameters of the system on the wiretap and covert rates, analytically and numerically. In summary, our study fills the gaps in joint secret and covert transmission for multi-user multi-antenna uplink UAV communications and provides insights to construct such systems.

Via

Abstract:We revisit the problem of statistical sequence matching between two databases of sequences initiated by Unnikrishnan (TIT 2015) and derive theoretical performance guarantees for the generalized likelihood ratio test (GLRT). We first consider the case where the number of matched pairs of sequences between the databases is known. In this case, the task is to accurately find the matched pairs of sequences among all possible matches between the sequences in the two databases. We analyze the performance of the GLRT by Unnikrishnan and explicitly characterize the tradeoff between the mismatch and false reject probabilities under each hypothesis in both large and small deviations regimes. Furthermore, we demonstrate the optimality of Unnikrishnan's GLRT test under the generalized Neyman-Person criterion for both regimes and illustrate our theoretical results via numerical examples. Subsequently, we generalize our achievability analyses to the case where the number of matched pairs is unknown, and an additional error probability needs to be considered. When one of the two databases contains a single sequence, the problem of statistical sequence matching specializes to the problem of multiple classification introduced by Gutman (TIT 1989). For this special case, our result for the small deviations regime strengthens previous result of Zhou, Tan and Motani (Information and Inference 2020) by removing unnecessary conditions on the generating distributions.

Via

Abstract:In outlier hypothesis testing, one aims to detect outlying sequences among a given set of sequences, where most sequences are generated i.i.d. from a nominal distribution while outlying sequences (outliers) are generated i.i.d. from a different anomalous distribution. Most existing studies focus on discrete-valued sequences, where each data sample takes values in a finite set. To account for practical scenarios where data sequences usually take real values, we study outlier hypothesis testing for continuous sequences when both the nominal and anomalous distributions are \emph{unknown}. Specifically, we propose distribution free tests and prove that the probabilities of misclassification error, false reject and false alarm decay exponentially fast for three different test designs: fixed-length test, sequential test, and two-phase test. In a fixed-length test, one fixes the sample size of each observed sequence; in a sequential test, one takes a sample sequentially from each sequence per unit time until a reliable decision can be made; in a two-phase test, one adapts the sample size from two different fixed values. Remarkably, the two-phase test achieves a good balance between test design complexity and theoretical performance. We first consider the case of at most one outlier, and then generalize our results to the case with multiple outliers where the number of outliers is unknown.

Via

Authors:Weijie Yuan, Lin Zhou, Saeid K. Dehkordi, Shuangyang Li, Pingzhi Fan, Giuseppe Caire, H. Vincent Poor

Figures and Tables:

Abstract:Next-generation vehicular networks are expected to provide the capability of robust environmental sensing in addition to reliable communications to meet intelligence requirements. A promising solution is the integrated sensing and communication (ISAC) technology, which performs both functionalities using the same spectrum and hardware resources. Most existing works on ISAC consider the Orthogonal Frequency Division Multiplexing (OFDM) waveform. Nevertheless, vehicle motion introduces Doppler shift, which breaks the subcarrier orthogonality and leads to performance degradation. The recently proposed Orthogonal Time Frequency Space (OTFS) modulation, which exploits various advantages of Delay Doppler (DD) channels, has been shown to support reliable communication in high-mobility scenarios. Moreover, the DD waveform can directly interact with radar sensing parameters, which are actually delay and Doppler shifts. This paper investigates the advantages of applying the DD communication waveform to ISAC. Specifically, we first provide a comprehensive overview of implementing DD communications, based on which several advantages of DD-ISAC over OFDM-based ISAC are revealed, including transceiver designs and the ambiguity function. Furthermore, a detailed performance comparison are presented, where the target detection probability and the mean squared error (MSE) performance are also studied. Finally, some challenges and opportunities of DD-ISAC are also provided.

Via

Abstract:We revisit multiple hypothesis testing and propose a two-phase test, where each phase is a fixed-length test and the second-phase proceeds only if a reject option is decided in the first phase. We derive achievable error exponents of error probabilities under each hypothesis and show that our two-phase test bridges over fixed-length and sequential tests in the similar spirit of Lalitha and Javidi (ISIT, 2016) for binary hypothesis testing. Specifically, our test could achieve the performance close to a sequential test with the asymptotic complexity of a fixed-length test and such test is named the almost fixed-length test. Motivated by practical applications where the generating distribution under each hypothesis is \emph{unknown}, we generalize our results to the statistical classification framework of Gutman (TIT, 1989). We first consider binary classification and then generalize our results to $M$-ary classification. For both cases, we propose a two-phase test, derive achievable error exponents and demonstrate that our two-phase test bridges over fixed-length and sequential tests. In particular, for $M$-ary classification, no final reject option is required to achieve the same exponent as the sequential test of Haghifam, Tan, and Khisti (TIT, 2021). Our results generalize the design and analysis of the almost fixed-length test for binary hypothesis testing to broader and more practical families of $M$-ary hypothesis testing and statistical classification.

Via

Figures and Tables:

Abstract:The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel attention module and gradually modify it to achieve better super-resolution performance with reduced parameters. The specific approaches include: (1) increasing the receptive field of the attention branch, (2) replacing large dense convolution kernels with depth-wise separable convolutions, and (3) introducing pixel normalization. These approaches paint a clear evolutionary roadmap for the design of attention mechanisms. Based on these observations, we propose VapSR, the VAst-receptive-field Pixel attention network. Experiments demonstrate the superior performance of VapSR. VapSR outperforms the present lightweight networks with even fewer parameters. And the light version of VapSR can use only 21.68% and 28.18% parameters of IMDB and RFDN to achieve similar performances to those networks. The code and models are available at url{https://github.com/zhoumumu/VapSR.

Via

Figures and Tables:

Abstract:Using the 20 questions estimation framework with query-dependent noise, we study non-adaptive search strategies for a moving target over the unit cube with unknown initial location and velocities under a piecewise constant velocity model. In this search problem, there is an oracle who knows the instantaneous location of the target at any time. Our task is to query the oracle as few times as possible to accurately estimate the location of the target at any specified time. We first study the case where the oracle's answer to each query is corrupted by discrete noise and then generalize our results to the case of additive white Gaussian noise. In our formulation, the performance criterion is the resolution, which is defined as the maximal $L_\infty$ distance between the true locations and estimated locations. We characterize the minimal resolution of an optimal non-adaptive query procedure with a finite number of queries by deriving non-asymptotic and asymptotic bounds. Our bounds are tight in the first-order asymptotic sense when the number of queries satisfies a certain condition and our bounds are tight in the stronger second-order asymptotic sense when the target moves with a constant velocity. To prove our results, we relate the current problem to channel coding, borrow ideas from finite blocklength information theory and construct bounds on the number of possible quantized target trajectories.

Via

Abstract:We revisit the outlier hypothesis testing framework of Li \emph{et al.} (TIT 2014) and derive fundamental limits for the optimal test. In outlier hypothesis testing, one is given multiple observed sequences, where most sequences are generated i.i.d. from a nominal distribution. The task is to discern the set of outlying sequences that are generated according to anomalous distributions. The nominal and anomalous distributions are \emph{unknown}. We consider the case of multiple outliers where the number of outliers is unknown and each outlier can follow a different anomalous distribution. Under this setting, we study the tradeoff among the probabilities of misclassification error, false alarm and false reject. Specifically, we propose a threshold-based test that ensures exponential decay of misclassification error and false alarm probabilities. We study two constraints on the false reject probability, with one constraint being that it is a non-vanishing constant and the other being that it has an exponential decay rate. For both cases, we characterize bounds on the false reject probability, as a function of the threshold, for each tuple of nominal and anomalous distributions. Finally, we demonstrate the asymptotic optimality of our test under the generalized Neyman-Pearson criterion.

Via