Abstract:Controlling the behaviors of large language models (LLM) is fundamental to their safety alignment and reliable deployment. However, existing steering methods are primarily driven by empirical insights and lack theoretical performance guarantees. In this work, we develop a control-theoretic foundation for activation steering by showing that popular steering methods correspond to the proportional (P) controllers, with the steering vector serving as the feedback signal. Building on this finding, we propose Proportional-Integral-Derivative (PID) Steering, a principled framework that leverages the full PID controller for activation steering in LLMs. The proportional (P) term aligns activations with target semantic directions, the integral (I) term accumulates errors to enforce persistent corrections across layers, and the derivative (D) term mitigates overshoot by counteracting rapid activation changes. This closed-loop design yields interpretable error dynamics and connects activation steering to classical stability guarantees in control theory. Moreover, PID Steering is lightweight, modular, and readily integrates with state-of-the-art steering methods. Extensive experiments across multiple LLM families and benchmarks demonstrate that PID Steering consistently outperforms existing approaches, achieving more robust and reliable behavioral control.
Abstract:Existing methods for merging experts during model training and fine-tuning predominantly rely on Euclidean geometry, which assumes a flat parameter space. This assumption can limit the model's generalization ability, especially during the pre-training phase, where the parameter manifold might exhibit more complex curvature. Curvature-aware merging methods typically require additional information and computational resources to approximate the Fisher Information Matrix, adding memory overhead. In this paper, we introduce CAMEx (\textbf{C}urvature-\textbf{A}ware \textbf{M}erging of \textbf{Ex}perts), a novel expert merging protocol that incorporates natural gradients to account for the non-Euclidean curvature of the parameter manifold. By leveraging natural gradients, CAMEx adapts more effectively to the structure of the parameter space, improving alignment between model updates and the manifold's geometry. This approach enhances both pre-training and fine-tuning, resulting in better optimization trajectories and improved generalization without the substantial memory overhead typically associated with curvature-aware methods. Our contributions are threefold: (1) CAMEx significantly outperforms traditional Euclidean-based expert merging techniques across various natural language processing tasks, leading to enhanced performance during pre-training and fine-tuning; (2) we introduce a dynamic merging architecture that optimizes resource utilization, achieving high performance while reducing computational costs, facilitating efficient scaling of large language models; and (3) we provide both theoretical and empirical evidence to demonstrate the efficiency of our proposed method.