https://github.com/ShaowuChen/Optimal_Brain_Connection
Structural pruning has been widely studied for its effectiveness in compressing neural networks. However, existing methods often neglect the interconnections among parameters. To address this limitation, this paper proposes a structural pruning framework termed Optimal Brain Connection. First, we introduce the Jacobian Criterion, a first-order metric for evaluating the saliency of structural parameters. Unlike existing first-order methods that assess parameters in isolation, our criterion explicitly captures both intra-component interactions and inter-layer dependencies. Second, we propose the Equivalent Pruning mechanism, which utilizes autoencoders to retain the contributions of all original connection--including pruned ones--during fine-tuning. Experimental results demonstrate that the Jacobian Criterion outperforms several popular metrics in preserving model performance, while the Equivalent Pruning mechanism effectively mitigates performance degradation after fine-tuning. Code: