Abstract:We propose Visual-only Question Answering (VoQA), a novel multimodal task in which questions are visually embedded within images, without any accompanying textual input. This requires models to locate, recognize, and reason over visually embedded textual questions, posing challenges for existing large vision-language models (LVLMs), which show notable performance drops even with carefully designed prompts. To bridge this gap, we introduce Guided Response Triggering Supervised Fine-tuning (GRT-SFT), a structured fine-tuning strategy that guides the model to perform step-by-step reasoning purely based on visual input, significantly improving model performance. Our work enhances models' capacity for human-like visual understanding in complex multimodal scenarios, where information, including language, is perceived visually.
Abstract:Self-supervised learning (SSL) methods via joint embedding architectures have proven remarkably effective at capturing semantically rich representations with strong clustering properties, magically in the absence of label supervision. Despite this, few of them have explored leveraging these untapped properties to improve themselves. In this paper, we provide an evidence through various metrics that the encoder's output $encoding$ exhibits superior and more stable clustering properties compared to other components. Building on this insight, we propose a novel positive-feedback SSL method, termed Representation Soft Assignment (ReSA), which leverages the model's clustering properties to promote learning in a self-guided manner. Extensive experiments on standard SSL benchmarks reveal that models pretrained with ReSA outperform other state-of-the-art SSL methods by a significant margin. Finally, we analyze how ReSA facilitates better clustering properties, demonstrating that it effectively enhances clustering performance at both fine-grained and coarse-grained levels, shaping representations that are inherently more structured and semantically meaningful.