Alert button
Picture for Joydeep Biswas

Joydeep Biswas

Alert button

Deploying and Evaluating LLMs to Program Service Mobile Robots

Nov 18, 2023
Zichao Hu, Francesca Lucchetti, Claire Schlesinger, Yash Saxena, Anders Freeman, Sadanand Modak, Arjun Guha, Joydeep Biswas

Recent advancements in large language models (LLMs) have spurred interest in using them for generating robot programs from natural language, with promising initial results. We investigate the use of LLMs to generate programs for service mobile robots leveraging mobility, perception, and human interaction skills, and where accurate sequencing and ordering of actions is crucial for success. We contribute CodeBotler, an open-source robot-agnostic tool to program service mobile robots from natural language, and RoboEval, a benchmark for evaluating LLMs' capabilities of generating programs to complete service robot tasks. CodeBotler performs program generation via few-shot prompting of LLMs with an embedded domain-specific language (eDSL) in Python, and leverages skill abstractions to deploy generated programs on any general-purpose mobile robot. RoboEval evaluates the correctness of generated programs by checking execution traces starting with multiple initial states, and checking whether the traces satisfy temporal logic properties that encode correctness for each task. RoboEval also includes multiple prompts per task to test for the robustness of program generation. We evaluate several popular state-of-the-art LLMs with the RoboEval benchmark, and perform a thorough analysis of the modes of failures, resulting in a taxonomy that highlights common pitfalls of LLMs at generating robot programs. We release our code and benchmark at https://amrl.cs.utexas.edu/codebotler/.

* paper preprint, 8 pages 
Viaarxiv icon

Towards Robust Robot 3D Perception in Urban Environments: The UT Campus Object Dataset

Oct 01, 2023
Arthur Zhang, Chaitanya Eranki, Christina Zhang, Ji-Hwan Park, Raymond Hong, Pranav Kalyani, Lochana Kalyanaraman, Arsh Gamare, Arnav Bagad, Maria Esteva, Joydeep Biswas

Figure 1 for Towards Robust Robot 3D Perception in Urban Environments: The UT Campus Object Dataset
Figure 2 for Towards Robust Robot 3D Perception in Urban Environments: The UT Campus Object Dataset
Figure 3 for Towards Robust Robot 3D Perception in Urban Environments: The UT Campus Object Dataset
Figure 4 for Towards Robust Robot 3D Perception in Urban Environments: The UT Campus Object Dataset

We introduce the UT Campus Object Dataset (CODa), a mobile robot egocentric perception dataset collected on the University of Texas Austin Campus. Our dataset contains 8.5 hours of multimodal sensor data: synchronized 3D point clouds and stereo RGB video from a 128-channel 3D LiDAR and two 1.25MP RGB cameras at 10 fps; RGB-D videos from an additional 0.5MP sensor at 7 fps, and a 9-DOF IMU sensor at 40 Hz. We provide 58 minutes of ground-truth annotations containing 1.3 million 3D bounding boxes with instance IDs for 53 semantic classes, 5000 frames of 3D semantic annotations for urban terrain, and pseudo-ground truth localization. We repeatedly traverse identical geographic locations for a wide range of indoor and outdoor areas, weather conditions, and times of the day. Using CODa, we empirically demonstrate that: 1) 3D object detection performance in urban settings is significantly higher when trained using CODa compared to existing datasets even when employing state-of-the-art domain adaptation approaches, 2) sensor-specific fine-tuning improves 3D object detection accuracy and 3) pretraining on CODa improves cross-dataset 3D object detection performance in urban settings compared to pretraining on AV datasets. Using our dataset and annotations, we release benchmarks for 3D object detection and 3D semantic segmentation using established metrics. In the future, the CODa benchmark will include additional tasks like unsupervised object discovery and re-identification. We publicly release CODa on the Texas Data Repository, pre-trained models, dataset development package, and interactive dataset viewer on our website at https://amrl.cs.utexas.edu/coda. We expect CODa to be a valuable dataset for research in egocentric 3D perception and planning for autonomous navigation in urban environments.

* 19 pages, 18 figures, 12 tables 
Viaarxiv icon

Self-Supervised Terrain Representation Learning from Unconstrained Robot Experience

Sep 26, 2023
Haresh Karnan, Elvin Yang, Daniel Farkash, Garrett Warnell, Joydeep Biswas, Peter Stone

Terrain awareness, i.e., the ability to identify and distinguish different types of terrain, is a critical ability that robots must have to succeed at autonomous off-road navigation. Current approaches that provide robots with this awareness either rely on labeled data which is expensive to collect, engineered features and cost functions that may not generalize, or expert human demonstrations which may not be available. Towards endowing robots with terrain awareness without these limitations, we introduce Self-supervised TErrain Representation LearnING (STERLING), a novel approach for learning terrain representations that relies solely on easy-to-collect, unconstrained (e.g., non-expert), and unlabelled robot experience, with no additional constraints on data collection. STERLING employs a novel multi-modal self-supervision objective through non-contrastive representation learning to learn relevant terrain representations for terrain-aware navigation. Through physical robot experiments in off-road environments, we evaluate STERLING features on the task of preference-aligned visual navigation and find that STERLING features perform on par with fully supervised approaches and outperform other state-of-the-art methods with respect to preference alignment. Additionally, we perform a large-scale experiment of autonomously hiking a 3-mile long trail which STERLING completes successfully with only two manual interventions, demonstrating its robustness to real-world off-road conditions.

* Conference on Robot Learning (CoRL 2023)  
Viaarxiv icon

ObVi-SLAM: Long-Term Object-Visual SLAM

Sep 26, 2023
Amanda Adkins, Taijing Chen, Joydeep Biswas

Figure 1 for ObVi-SLAM: Long-Term Object-Visual SLAM
Figure 2 for ObVi-SLAM: Long-Term Object-Visual SLAM
Figure 3 for ObVi-SLAM: Long-Term Object-Visual SLAM
Figure 4 for ObVi-SLAM: Long-Term Object-Visual SLAM

Robots responsible for tasks over long time scales must be able to localize consistently and scalably amid geometric, viewpoint, and appearance changes. Existing visual SLAM approaches rely on low-level feature descriptors that are not robust to such environmental changes and result in large map sizes that scale poorly over long-term deployments. In contrast, object detections are robust to environmental variations and lead to more compact representations, but most object-based SLAM systems target short-term indoor deployments with close objects. In this paper, we introduce ObVi-SLAM to overcome these challenges by leveraging the best of both approaches. ObVi-SLAM uses low-level visual features for high-quality short-term visual odometry; and to ensure global, long-term consistency, ObVi-SLAM builds an uncertainty-aware long-term map of persistent objects and updates it after every deployment. By evaluating ObVi-SLAM on data from 16 deployment sessions spanning different weather and lighting conditions, we empirically show that ObVi-SLAM generates accurate localization estimates consistent over long-time scales in spite of varying appearance conditions.

* 8 pages, 7 figures, 1 table 
Viaarxiv icon

Targeted Learning: A Hybrid Approach to Social Robot Navigation

Sep 23, 2023
Amir Hossain Raj, Zichao Hu, Haresh Karnan, Rohan Chandra, Amirreza Payandeh, Luisa Mao, Peter Stone, Joydeep Biswas, Xuesu Xiao

Empowering robots to navigate in a socially compliant manner is essential for the acceptance of robots moving in human-inhabited environments. Previously, roboticists have developed classical navigation systems with decades of empirical validation to achieve safety and efficiency. However, the many complex factors of social compliance make classical navigation systems hard to adapt to social situations, where no amount of tuning enables them to be both safe (people are too unpredictable) and efficient (the frozen robot problem). With recent advances in deep learning approaches, the common reaction has been to entirely discard classical navigation systems and start from scratch, building a completely new learning-based social navigation planner. In this work, we find that this reaction is unnecessarily extreme: using a large-scale real-world social navigation dataset, SCAND, we find that classical systems can be used safely and efficiently in a large number of social situations (up to 80%). We therefore ask if we can rethink this problem by leveraging the advantages of both classical and learning-based approaches. We propose a hybrid strategy in which we learn to switch between a classical geometric planner and a data-driven method. Our experiments on both SCAND and two physical robots show that the hybrid planner can achieve better social compliance in terms of a variety of metrics, compared to using either the classical or learning-based approach alone.

Viaarxiv icon

Wait, That Feels Familiar: Learning to Extrapolate Human Preferences for Preference Aligned Path Planning

Sep 18, 2023
Haresh Karnan, Elvin Yang, Garrett Warnell, Joydeep Biswas, Peter Stone

Autonomous mobility tasks such as lastmile delivery require reasoning about operator indicated preferences over terrains on which the robot should navigate to ensure both robot safety and mission success. However, coping with out of distribution data from novel terrains or appearance changes due to lighting variations remains a fundamental problem in visual terrain adaptive navigation. Existing solutions either require labor intensive manual data recollection and labeling or use handcoded reward functions that may not align with operator preferences. In this work, we posit that operator preferences for visually novel terrains, which the robot should adhere to, can often be extrapolated from established terrain references within the inertial, proprioceptive, and tactile domain. Leveraging this insight, we introduce Preference extrApolation for Terrain awarE Robot Navigation, PATERN, a novel framework for extrapolating operator terrain preferences for visual navigation. PATERN learns to map inertial, proprioceptive, tactile measurements from the robots observations to a representation space and performs nearest neighbor search in this space to estimate operator preferences over novel terrains. Through physical robot experiments in outdoor environments, we assess PATERNs capability to extrapolate preferences and generalize to novel terrains and challenging lighting conditions. Compared to baseline approaches, our findings indicate that PATERN robustly generalizes to diverse terrains and varied lighting conditions, while navigating in a preference aligned manner.

Viaarxiv icon

Decentralized Multi-Robot Social Navigation in Constrained Environments via Game-Theoretic Control Barrier Functions

Aug 31, 2023
Rohan Chandra, Vrushabh Zinage, Efstathios Bakolas, Joydeep Biswas, Peter Stone

Figure 1 for Decentralized Multi-Robot Social Navigation in Constrained Environments via Game-Theoretic Control Barrier Functions
Figure 2 for Decentralized Multi-Robot Social Navigation in Constrained Environments via Game-Theoretic Control Barrier Functions
Figure 3 for Decentralized Multi-Robot Social Navigation in Constrained Environments via Game-Theoretic Control Barrier Functions
Figure 4 for Decentralized Multi-Robot Social Navigation in Constrained Environments via Game-Theoretic Control Barrier Functions

We present an approach to ensure safe and deadlock-free navigation for decentralized multi-robot systems operating in constrained environments, including doorways and intersections. Although many solutions have been proposed to ensure safety, preventing deadlocks in a decentralized fashion with global consensus remains an open problem. We first formalize the objective as a non-cooperative, non-communicative, partially observable multi-robot navigation problem in constrained spaces with multiple conflicting agents, which we term as \emph{social mini-games}. Our approach to ensuring liveness rests on two novel insights: $(i)$ there exists a mixed-strategy Nash equilibrium that allows decentralized robots to perturb their state onto \textit{liveness sets} i.e. states where robots are deadlock-free and $(ii)$ forward invariance of liveness sets can be achieved identical to how control barrier functions (CBFs) guarantee forward invariance of safety sets. We evaluate our approach in simulation as well on physical robots using F$1/10$ robots, a Clearpath Jackal, as well as a Boston Dynamics Spot in a doorway and corridor intersection scenario. Compared to both fully decentralized and centralized approaches with and without deadlock resolution capabilities, we demonstrate that our approach results in safer, more efficient, and smoother navigation, based on a comprehensive set of metrics including success rate, collision rate, stop time, change in velocity, path deviation, time-to-goal, and flow rate.

* arXiv admin note: text overlap with arXiv:2306.08815 
Viaarxiv icon

Learning Reward Machines through Preference Queries over Sequences

Aug 18, 2023
Eric Hsiung, Joydeep Biswas, Swarat Chaudhuri

Figure 1 for Learning Reward Machines through Preference Queries over Sequences
Figure 2 for Learning Reward Machines through Preference Queries over Sequences
Figure 3 for Learning Reward Machines through Preference Queries over Sequences
Figure 4 for Learning Reward Machines through Preference Queries over Sequences

Reward machines have shown great promise at capturing non-Markovian reward functions for learning tasks that involve complex action sequencing. However, no algorithm currently exists for learning reward machines with realistic weak feedback in the form of preferences. We contribute REMAP, a novel algorithm for learning reward machines from preferences, with correctness and termination guarantees. REMAP introduces preference queries in place of membership queries in the L* algorithm, and leverages a symbolic observation table along with unification and constraint solving to narrow the hypothesis reward machine search space. In addition to the proofs of correctness and termination for REMAP, we present empirical evidence measuring correctness: how frequently the resulting reward machine is isomorphic under a consistent yet inexact teacher, and the regret between the ground truth and learned reward machines.

* 24 pages, 10 figures 
Viaarxiv icon