UT Austin
Abstract:Robust cross-view 3-DoF localization in GPS-denied, off-road environments remains challenging due to (1) perceptual ambiguities from repetitive vegetation and unstructured terrain, and (2) seasonal shifts that significantly alter scene appearance, hindering alignment with outdated satellite imagery. To address this, we introduce MoViX, a self-supervised cross-view video localization framework that learns viewpoint- and season-invariant representations while preserving directional awareness essential for accurate localization. MoViX employs a pose-dependent positive sampling strategy to enhance directional discrimination and temporally aligned hard negative mining to discourage shortcut learning from seasonal cues. A motion-informed frame sampler selects spatially diverse frames, and a lightweight temporal aggregator emphasizes geometrically aligned observations while downweighting ambiguous ones. At inference, MoViX runs within a Monte Carlo Localization framework, using a learned cross-view matching module in place of handcrafted models. Entropy-guided temperature scaling enables robust multi-hypothesis tracking and confident convergence under visual ambiguity. We evaluate MoViX on the TartanDrive 2.0 dataset, training on under 30 minutes of data and testing over 12.29 km. Despite outdated satellite imagery, MoViX localizes within 25 meters of ground truth 93% of the time, and within 50 meters 100% of the time in unseen regions, outperforming state-of-the-art baselines without environment-specific tuning. We further demonstrate generalization on a real-world off-road dataset from a geographically distinct site with a different robot platform.
Abstract:Accurate and robust pose estimation is a key requirement for any autonomous robot. We present cuVSLAM, a state-of-the-art solution for visual simultaneous localization and mapping, which can operate with a variety of visual-inertial sensor suites, including multiple RGB and depth cameras, and inertial measurement units. cuVSLAM supports operation with as few as one RGB camera to as many as 32 cameras, in arbitrary geometric configurations, thus supporting a wide range of robotic setups. cuVSLAM is specifically optimized using CUDA to deploy in real-time applications with minimal computational overhead on edge-computing devices such as the NVIDIA Jetson. We present the design and implementation of cuVSLAM, example use cases, and empirical results on several state-of-the-art benchmarks demonstrating the best-in-class performance of cuVSLAM.
Abstract:Text-to-image generation models have achieved remarkable capabilities in synthesizing images, but often struggle to provide fine-grained control over the output. Existing guidance approaches, such as segmentation maps and depth maps, introduce spatial rigidity that restricts the inherent diversity of diffusion models. In this work, we introduce Deep Geometric Moments (DGM) as a novel form of guidance that encapsulates the subject's visual features and nuances through a learned geometric prior. DGMs focus specifically on the subject itself compared to DINO or CLIP features, which suffer from overemphasis on global image features or semantics. Unlike ResNets, which are sensitive to pixel-wise perturbations, DGMs rely on robust geometric moments. Our experiments demonstrate that DGM effectively balance control and diversity in diffusion-based image generation, allowing a flexible control mechanism for steering the diffusion process.
Abstract:A quadruped robot is a promising system that can offer assistance comparable to that of dog guides due to its similar form factor. However, various challenges remain in making these robots a reliable option for blind and low-vision (BLV) individuals. Among these challenges, noise and jerky motion during walking are critical drawbacks of existing quadruped robots. While these issues have largely been overlooked in guide dog robot research, our interviews with guide dog handlers and trainers revealed that acoustic and physical disturbances can be particularly disruptive for BLV individuals, who rely heavily on environmental sounds for navigation. To address these issues, we developed a novel walking controller for slow stepping and smooth foot swing/contact while maintaining human walking speed, as well as robust and stable balance control. The controller integrates with a perception system to facilitate locomotion over non-flat terrains, such as stairs. Our controller was extensively tested on the Unitree Go1 robot and, when compared with other control methods, demonstrated significant noise reduction -- half of the default locomotion controller. In this study, we adopt a mixed-methods approach to evaluate its usability with BLV individuals. In our indoor walking experiments, participants compared our controller to the robot's default controller. Results demonstrated superior acceptance of our controller, highlighting its potential to improve the user experience of guide dog robots. Video demonstration (best viewed with audio) available at: https://youtu.be/8-pz_8Hqe6s.
Abstract:We address the long-horizon mapless navigation problem: enabling robots to traverse novel environments without relying on high-definition maps or precise waypoints that specify exactly where to navigate. Achieving this requires overcoming two major challenges -- learning robust, generalizable perceptual representations of the environment without pre-enumerating all possible navigation factors and forms of perceptual aliasing and utilizing these learned representations to plan human-aligned navigation paths. Existing solutions struggle to generalize due to their reliance on hand-curated object lists that overlook unforeseen factors, end-to-end learning of navigation features from scarce large-scale robot datasets, and handcrafted reward functions that scale poorly to diverse scenarios. To overcome these limitations, we propose CREStE, the first method that learns representations and rewards for addressing the full mapless navigation problem without relying on large-scale robot datasets or manually curated features. CREStE leverages visual foundation models trained on internet-scale data to learn continuous bird's-eye-view representations capturing elevation, semantics, and instance-level features. To utilize learned representations for planning, we propose a counterfactual-based loss and active learning procedure that focuses on the most salient perceptual cues by querying humans for counterfactual trajectory annotations in challenging scenes. We evaluate CREStE in kilometer-scale navigation tasks across six distinct urban environments. CREStE significantly outperforms all state-of-the-art approaches with 70% fewer human interventions per mission, including a 2-kilometer mission in an unseen environment with just 1 intervention; showcasing its robustness and effectiveness for long-horizon mapless navigation. For videos and additional materials, see https://amrl.cs.utexas.edu/creste .
Abstract:As robots are increasingly deployed in diverse application domains, generalizable cross-embodiment mobility policies are increasingly essential. While classical mobility stacks have proven effective on specific robot platforms, they pose significant challenges when scaling to new embodiments. Learning-based methods, such as imitation learning (IL) and reinforcement learning (RL), offer alternative solutions but suffer from covariate shift, sparse sampling in large environments, and embodiment-specific constraints. This paper introduces COMPASS, a novel workflow for developing cross-embodiment mobility policies by integrating IL, residual RL, and policy distillation. We begin with IL on a mobile robot, leveraging easily accessible teacher policies to train a foundational model that combines a world model with a mobility policy. Building on this base, we employ residual RL to fine-tune embodiment-specific policies, exploiting pre-trained representations to improve sampling efficiency in handling various physical constraints and sensor modalities. Finally, policy distillation merges these embodiment-specialist policies into a single robust cross-embodiment policy. We empirically demonstrate that COMPASS scales effectively across diverse robot platforms while maintaining adaptability to various environment configurations, achieving a generalist policy with a success rate approximately 5X higher than the pre-trained IL policy. The resulting framework offers an efficient, scalable solution for cross-embodiment mobility, enabling robots with different designs to navigate safely and efficiently in complex scenarios.
Abstract:Existing benchmarks for frontier models often test specialized, ``PhD-level'' knowledge that is difficult for non-experts to grasp. In contrast, we present a benchmark based on the NPR Sunday Puzzle Challenge that requires only general knowledge. Our benchmark is challenging for both humans and models, however correct solutions are easy to verify, and models' mistakes are easy to spot. Our work reveals capability gaps that are not evident in existing benchmarks: OpenAI o1 significantly outperforms other reasoning models that are on par on benchmarks that test specialized knowledge. Furthermore, our analysis of reasoning outputs uncovers new kinds of failures. DeepSeek R1, for instance, often concedes with ``I give up'' before providing an answer that it knows is wrong. R1 can also be remarkably ``uncertain'' in its output and in rare cases, it does not ``finish thinking,'' which suggests the need for an inference-time technique to ``wrap up'' before the context window limit is reached. We also quantify the effectiveness of reasoning longer with R1 and Gemini Thinking to identify the point beyond which more reasoning is unlikely to improve accuracy on our benchmark.
Abstract:The growing use of autonomous mobile service robots (AMSRs) in dynamic environments requires flexible management of compute resources to optimize the performance of diverse tasks such as navigation, localization, perception, and so on. Current robot deployments, which oftentimes rely on static configurations (of the OS, applications, etc.) and system over-provisioning, fall short since they do not account for the tasks' performance variations resulting in poor system-wide behavior such as robot instability and/or inefficient resource use. This paper presents ConfigBot, a system designed to adaptively reconfigure AMSR applications to meet a predefined performance specification by leveraging runtime profiling and automated configuration tuning. Through experiments on a Boston Dynamics Spot robot equipped with NVIDIA AGX Orin, we demonstrate ConfigBot's efficacy in maintaining system stability and optimizing resource allocation across diverse scenarios. Our findings highlight the promise of tailored and dynamic configurations for robot deployments.
Abstract:We describe the development of a one-credit course to promote AI literacy at The University of Texas at Austin. In response to a call for the rapid deployment of class to serve a broad audience in Fall of 2023, we designed a 14-week seminar-style course that incorporated an interdisciplinary group of speakers who lectured on topics ranging from the fundamentals of AI to societal concerns including disinformation and employment. University students, faculty, and staff, and even community members outside of the University, were invited to enroll in this online offering: The Essentials of AI for Life and Society. We collected feedback from course participants through weekly reflections and a final survey. Satisfyingly, we found that attendees reported gains in their AI literacy. We sought critical feedback through quantitative and qualitative analysis, which uncovered challenges in designing a course for this general audience. We utilized the course feedback to design a three-credit version of the course that is being offered in Fall of 2024. The lessons we learned and our plans for this new iteration may serve as a guide to instructors designing AI courses for a broad audience.
Abstract:Quantitative automata are useful representations for numerous applications, including modeling probability distributions over sequences to Markov chains and reward machines. Actively learning such automata typically occurs using explicitly gathered input-output examples under adaptations of the L-star algorithm. However, obtaining explicit input-output pairs can be expensive, and there exist scenarios, including preference-based learning or learning from rankings, where providing constraints is a less exerting and a more natural way to concisely describe desired properties. Consequently, we propose the problem of learning deterministic quantitative automata from sets of constraints over the valuations of input sequences. We present QUINTIC, an active learning algorithm, wherein the learner infers a valid automaton through deductive reasoning, by applying a theory to a set of currently available constraints and an assumed preference model and quantitative automaton class. QUINTIC performs a complete search over the space of automata, and is guaranteed to be minimal and correctly terminate. Our evaluations utilize theory of rationals in order to learn summation, discounted summation, product, and classification quantitative automata, and indicate QUINTIC is effective at learning these types of automata.