Abstract:Modeling human pose is a cornerstone in applications from human-robot interaction to augmented reality, yet crafting a robust human pose prior remains a challenge due to biomechanical constraints and diverse human movements. Traditional priors like VAEs and NDFs often fall short in realism and generalization, especially in extreme conditions such as unseen noisy poses. To address these issues, we introduce DPoser, a robust and versatile human pose prior built upon diffusion models. Designed with optimization frameworks, DPoser seamlessly integrates into various pose-centric applications, including human mesh recovery, pose completion, and motion denoising. Specifically, by formulating these tasks as inverse problems, we employ variational diffusion sampling for efficient solving. Furthermore, acknowledging the disparity between the articulated poses we focus on and structured images in previous research, we propose a truncated timestep scheduling to boost performance on downstream tasks. Our exhaustive experiments demonstrate DPoser's superiority over existing state-of-the-art pose priors across multiple tasks.
Abstract:Humans interact with objects all the time. Enabling a humanoid to learn human-object interaction (HOI) is a key step for future smart animation and intelligent robotics systems. However, recent progress in physics-based HOI requires carefully designed task-specific rewards, making the system unscalable and labor-intensive. This work focuses on dynamic HOI imitation: teaching humanoid dynamic interaction skills through imitating kinematic HOI demonstrations. It is quite challenging because of the complexity of the interaction between body parts and objects and the lack of dynamic HOI data. To handle the above issues, we present PhysHOI, the first physics-based whole-body HOI imitation approach without task-specific reward designs. Except for the kinematic HOI representations of humans and objects, we introduce the contact graph to model the contact relations between body parts and objects explicitly. A contact graph reward is also designed, which proved to be critical for precise HOI imitation. Based on the key designs, PhysHOI can imitate diverse HOI tasks simply yet effectively without prior knowledge. To make up for the lack of dynamic HOI scenarios in this area, we introduce the BallPlay dataset that contains eight whole-body basketball skills. We validate PhysHOI on diverse HOI tasks, including whole-body grasping and basketball skills.
Abstract:We introduce PoseGPT, a framework employing Large Language Models (LLMs) to understand and reason about 3D human poses from images or textual descriptions. Our work is motivated by the human ability to intuitively understand postures from a single image or a brief description, a process that intertwines image interpretation, world knowledge, and an understanding of body language. Traditional human pose estimation methods, whether image-based or text-based, often lack holistic scene comprehension and nuanced reasoning, leading to a disconnect between visual data and its real-world implications. PoseGPT addresses these limitations by embedding SMPL poses as a distinct signal token within a multi-modal LLM, enabling direct generation of 3D body poses from both textual and visual inputs. This approach not only simplifies pose prediction but also empowers LLMs to apply their world knowledge in reasoning about human poses, fostering two advanced tasks: speculative pose generation and reasoning about pose estimation. These tasks involve reasoning about humans to generate 3D poses from subtle text queries, possibly accompanied by images. We establish benchmarks for these tasks, moving beyond traditional 3D pose generation and estimation methods. Our results show that PoseGPT outperforms existing multimodal LLMs and task-sepcific methods on these newly proposed tasks. Furthermore, PoseGPT's ability to understand and generate 3D human poses based on complex reasoning opens new directions in human pose analysis.
Abstract:3D whole-body human mesh recovery aims to reconstruct the 3D human body, face, and hands from a single image. Although powerful deep learning models have achieved accurate estimation in this task, they require enormous memory and computational resources. Consequently, these methods can hardly be deployed on resource-limited edge devices. In this work, we propose a Binarized Dual Residual Network (BiDRN), a novel quantization method to estimate the 3D human body, face, and hands parameters efficiently. Specifically, we design a basic unit Binarized Dual Residual Block (BiDRB) composed of Local Convolution Residual (LCR) and Block Residual (BR), which can preserve full-precision information as much as possible. For LCR, we generalize it to four kinds of convolutional modules so that full-precision information can be propagated even between mismatched dimensions. We also binarize the face and hands box-prediction network as Binaried BoxNet, which can further reduce the model redundancy. Comprehensive quantitative and qualitative experiments demonstrate the effectiveness of BiDRN, which has a significant improvement over state-of-the-art binarization algorithms. Moreover, our proposed BiDRN achieves comparable performance with full-precision method Hand4Whole while using just 22.1% parameters and 14.8% operations. We will release all the code and pretrained models.
Abstract:This work targets a novel text-driven whole-body motion generation task, which takes a given textual description as input and aims at generating high-quality, diverse, and coherent facial expressions, hand gestures, and body motions simultaneously. Previous works on text-driven motion generation tasks mainly have two limitations: they ignore the key role of fine-grained hand and face controlling in vivid whole-body motion generation, and lack a good alignment between text and motion. To address such limitations, we propose a Text-aligned whOle-body Motion generATiOn framework, named HumanTOMATO, which is the first attempt to our knowledge towards applicable holistic motion generation in this research area. To tackle this challenging task, our solution includes two key designs: (1) a Holistic Hierarchical VQ-VAE (aka H$^2$VQ) and a Hierarchical-GPT for fine-grained body and hand motion reconstruction and generation with two structured codebooks; and (2) a pre-trained text-motion-alignment model to help generated motion align with the input textual description explicitly. Comprehensive experiments verify that our model has significant advantages in both the quality of generated motions and their alignment with text.
Abstract:An accurate estimation of the state of health (SOH) of batteries is critical to ensuring the safe and reliable operation of electric vehicles (EVs). Feature-based machine learning methods have exhibited enormous potential for rapidly and precisely monitoring battery health status. However, simultaneously using various health indicators (HIs) may weaken estimation performance due to feature redundancy. Furthermore, ignoring real-world driving behaviors can lead to inaccurate estimation results as some features are rarely accessible in practical scenarios. To address these issues, we proposed a feature-based machine learning pipeline for reliable battery health monitoring, enabled by evaluating the acquisition probability of features under real-world driving conditions. We first summarized and analyzed various individual HIs with mechanism-related interpretations, which provide insightful guidance on how these features relate to battery degradation modes. Moreover, all features were carefully evaluated and screened based on estimation accuracy and correlation analysis on three public battery degradation datasets. Finally, the scenario-based feature fusion and acquisition probability-based practicality evaluation method construct a useful tool for feature extraction with consideration of driving behaviors. This work highlights the importance of balancing the performance and practicality of HIs during the development of feature-based battery health monitoring algorithms.
Abstract:As Machine Learning (ML) is increasingly used in solving various tasks in real-world applications, it is crucial to ensure that ML algorithms are robust to any potential worst-case noises, adversarial attacks, and highly unusual situations when they are designed. Studying ML robustness will significantly help in the design of ML algorithms. In this paper, we investigate ML robustness using adversarial training in centralized and decentralized environments, where ML training and testing are conducted in one or multiple computers. In the centralized environment, we achieve a test accuracy of 65.41% and 83.0% when classifying adversarial examples generated by Fast Gradient Sign Method and DeepFool, respectively. Comparing to existing studies, these results demonstrate an improvement of 18.41% for FGSM and 47% for DeepFool. In the decentralized environment, we study Federated learning (FL) robustness by using adversarial training with independent and identically distributed (IID) and non-IID data, respectively, where CIFAR-10 is used in this research. In the IID data case, our experimental results demonstrate that we can achieve such a robust accuracy that it is comparable to the one obtained in the centralized environment. Moreover, in the non-IID data case, the natural accuracy drops from 66.23% to 57.82%, and the robust accuracy decreases by 25% and 23.4% in C&W and Projected Gradient Descent (PGD) attacks, compared to the IID data case, respectively. We further propose an IID data-sharing approach, which allows for increasing the natural accuracy to 85.04% and the robust accuracy from 57% to 72% in C&W attacks and from 59% to 67% in PGD attacks.
Abstract:In this paper, we present Motion-X, a large-scale 3D expressive whole-body motion dataset. Existing motion datasets predominantly contain body-only poses, lacking facial expressions, hand gestures, and fine-grained pose descriptions. Moreover, they are primarily collected from limited laboratory scenes with textual descriptions manually labeled, which greatly limits their scalability. To overcome these limitations, we develop a whole-body motion and text annotation pipeline, which can automatically annotate motion from either single- or multi-view videos and provide comprehensive semantic labels for each video and fine-grained whole-body pose descriptions for each frame. This pipeline is of high precision, cost-effective, and scalable for further research. Based on it, we construct Motion-X, which comprises 13.7M precise 3D whole-body pose annotations (i.e., SMPL-X) covering 96K motion sequences from massive scenes. Besides, Motion-X provides 13.7M frame-level whole-body pose descriptions and 96K sequence-level semantic labels. Comprehensive experiments demonstrate the accuracy of the annotation pipeline and the significant benefit of Motion-X in enhancing expressive, diverse, and natural motion generation, as well as 3D whole-body human mesh recovery.
Abstract:Existing deep learning models for hyperspectral image (HSI) reconstruction achieve good performance but require powerful hardwares with enormous memory and computational resources. Consequently, these methods can hardly be deployed on resource-limited mobile devices. In this paper, we propose a novel method, Binarized Spectral-Redistribution Network (BiSRNet), for efficient and practical HSI restoration from compressed measurement in snapshot compressive imaging (SCI) systems. Firstly, we redesign a compact and easy-to-deploy base model to be binarized. Then we present the basic unit, Binarized Spectral-Redistribution Convolution (BiSR-Conv). BiSR-Conv can adaptively redistribute the HSI representations before binarizing activation and uses a scalable hyperbolic tangent function to closer approximate the Sign function in backpropagation. Based on our BiSR-Conv, we customize four binarized convolutional modules to address the dimension mismatch and propagate full-precision information throughout the whole network. Finally, our BiSRNet is derived by using the proposed techniques to binarize the base model. Comprehensive quantitative and qualitative experiments manifest that our proposed BiSRNet outperforms state-of-the-art binarization methods and achieves comparable performance with full-precision algorithms. Code and models will be released at https://github.com/caiyuanhao1998/BiSCI and https://github.com/caiyuanhao1998/MST
Abstract:Whole-body mesh recovery aims to estimate the 3D human body, face, and hands parameters from a single image. It is challenging to perform this task with a single network due to resolution issues, i.e., the face and hands are usually located in extremely small regions. Existing works usually detect hands and faces, enlarge their resolution to feed in a specific network to predict the parameter, and finally fuse the results. While this copy-paste pipeline can capture the fine-grained details of the face and hands, the connections between different parts cannot be easily recovered in late fusion, leading to implausible 3D rotation and unnatural pose. In this work, we propose a one-stage pipeline for expressive whole-body mesh recovery, named OSX, without separate networks for each part. Specifically, we design a Component Aware Transformer (CAT) composed of a global body encoder and a local face/hand decoder. The encoder predicts the body parameters and provides a high-quality feature map for the decoder, which performs a feature-level upsample-crop scheme to extract high-resolution part-specific features and adopt keypoint-guided deformable attention to estimate hand and face precisely. The whole pipeline is simple yet effective without any manual post-processing and naturally avoids implausible prediction. Comprehensive experiments demonstrate the effectiveness of OSX. Lastly, we build a large-scale Upper-Body dataset (UBody) with high-quality 2D and 3D whole-body annotations. It contains persons with partially visible bodies in diverse real-life scenarios to bridge the gap between the basic task and downstream applications.