Abstract:Visual tracking often faces challenges such as invalid targets and decreased performance in low-light conditions when relying solely on RGB image sequences. While incorporating additional modalities like depth and infrared data has proven effective, existing multi-modal imaging platforms are complex and lack real-world applicability. In contrast, near-infrared (NIR) imaging, commonly used in surveillance cameras, can switch between RGB and NIR based on light intensity. However, tracking objects across these heterogeneous modalities poses significant challenges, particularly due to the absence of modality switch signals during tracking. To address these challenges, we propose an adaptive cross-modal object tracking algorithm called Modality-Aware Fusion Network (MAFNet). MAFNet efficiently integrates information from both RGB and NIR modalities using an adaptive weighting mechanism, effectively bridging the appearance gap and enabling a modality-aware target representation. It consists of two key components: an adaptive weighting module and a modality-specific representation module......
Abstract:Pattern recognition based on RGB-Event data is a newly arising research topic and previous works usually learn their features using CNN or Transformer. As we know, CNN captures the local features well and the cascaded self-attention mechanisms are good at extracting the long-range global relations. It is intuitive to combine them for high-performance RGB-Event based video recognition, however, existing works fail to achieve a good balance between the accuracy and model parameters, as shown in Fig.~\ref{firstimage}. In this work, we propose a novel RGB-Event based recognition framework termed TSCFormer, which is a relatively lightweight CNN-Transformer model. Specifically, we mainly adopt the CNN as the backbone network to first encode both RGB and Event data. Meanwhile, we initialize global tokens as the input and fuse them with RGB and Event features using the BridgeFormer module. It captures the global long-range relations well between both modalities and maintains the simplicity of the whole model architecture at the same time. The enhanced features will be projected and fused into the RGB and Event CNN blocks, respectively, in an interactive manner using F2E and F2V modules. Similar operations are conducted for other CNN blocks to achieve adaptive fusion and local-global feature enhancement under different resolutions. Finally, we concatenate these three features and feed them into the classification head for pattern recognition. Extensive experiments on two large-scale RGB-Event benchmark datasets (PokerEvent and HARDVS) fully validated the effectiveness of our proposed TSCFormer. The source code and pre-trained models will be released at https://github.com/Event-AHU/TSCFormer.
Abstract:Existing pedestrian attribute recognition (PAR) algorithms adopt pre-trained CNN (e.g., ResNet) as their backbone network for visual feature learning, which might obtain sub-optimal results due to the insufficient employment of the relations between pedestrian images and attribute labels. In this paper, we formulate PAR as a vision-language fusion problem and fully exploit the relations between pedestrian images and attribute labels. Specifically, the attribute phrases are first expanded into sentences, and then the pre-trained vision-language model CLIP is adopted as our backbone for feature embedding of visual images and attribute descriptions. The contrastive learning objective connects the vision and language modalities well in the CLIP-based feature space, and the Transformer layers used in CLIP can capture the long-range relations between pixels. Then, a multi-modal Transformer is adopted to fuse the dual features effectively and feed-forward network is used to predict attributes. To optimize our network efficiently, we propose the region-aware prompt tuning technique to adjust very few parameters (i.e., only the prompt vectors and classification heads) and fix both the pre-trained VL model and multi-modal Transformer. Our proposed PAR algorithm only adjusts 0.75% learnable parameters compared with the fine-tuning strategy. It also achieves new state-of-the-art performance on both standard and zero-shot settings for PAR, including RAPv1, RAPv2, WIDER, PA100K, and PETA-ZS, RAP-ZS datasets. The source code and pre-trained models will be released on https://github.com/Event-AHU/OpenPAR.
Abstract:Understanding vehicles in images is important for various applications such as intelligent transportation and self-driving system. Existing vehicle-centric works typically pre-train models on large-scale classification datasets and then fine-tune them for specific downstream tasks. However, they neglect the specific characteristics of vehicle perception in different tasks and might thus lead to sub-optimal performance. To address this issue, we propose a novel vehicle-centric pre-training framework called VehicleMAE, which incorporates the structural information including the spatial structure from vehicle profile information and the semantic structure from informative high-level natural language descriptions for effective masked vehicle appearance reconstruction. To be specific, we explicitly extract the sketch lines of vehicles as a form of the spatial structure to guide vehicle reconstruction. The more comprehensive knowledge distilled from the CLIP big model based on the similarity between the paired/unpaired vehicle image-text sample is further taken into consideration to help achieve a better understanding of vehicles. A large-scale dataset is built to pre-train our model, termed Autobot1M, which contains about 1M vehicle images and 12693 text information. Extensive experiments on four vehicle-based downstream tasks fully validated the effectiveness of our VehicleMAE. The source code and pre-trained models will be released at https://github.com/Event-AHU/VehicleMAE.
Abstract:Current pedestrian attribute recognition (PAR) algorithms are developed based on multi-label or multi-task learning frameworks, which aim to discriminate the attributes using specific classification heads. However, these discriminative models are easily influenced by imbalanced data or noisy samples. Inspired by the success of generative models, we rethink the pedestrian attribute recognition scheme and believe the generative models may perform better on modeling dependencies and complexity between human attributes. In this paper, we propose a novel sequence generation paradigm for pedestrian attribute recognition, termed SequencePAR. It extracts the pedestrian features using a pre-trained CLIP model and embeds the attribute set into query tokens under the guidance of text prompts. Then, a Transformer decoder is proposed to generate the human attributes by incorporating the visual features and attribute query tokens. The masked multi-head attention layer is introduced into the decoder module to prevent the model from remembering the next attribute while making attribute predictions during training. Extensive experiments on multiple widely used pedestrian attribute recognition datasets fully validated the effectiveness of our proposed SequencePAR. The source code and pre-trained models will be released at https://github.com/Event-AHU/OpenPAR.
Abstract:Tracking using bio-inspired event cameras has drawn more and more attention in recent years. Existing works either utilize aligned RGB and event data for accurate tracking or directly learn an event-based tracker. The first category needs more cost for inference and the second one may be easily influenced by noisy events or sparse spatial resolution. In this paper, we propose a novel hierarchical knowledge distillation framework that can fully utilize multi-modal / multi-view information during training to facilitate knowledge transfer, enabling us to achieve high-speed and low-latency visual tracking during testing by using only event signals. Specifically, a teacher Transformer-based multi-modal tracking framework is first trained by feeding the RGB frame and event stream simultaneously. Then, we design a new hierarchical knowledge distillation strategy which includes pairwise similarity, feature representation, and response maps-based knowledge distillation to guide the learning of the student Transformer network. Moreover, since existing event-based tracking datasets are all low-resolution ($346 \times 260$), we propose the first large-scale high-resolution ($1280 \times 720$) dataset named EventVOT. It contains 1141 videos and covers a wide range of categories such as pedestrians, vehicles, UAVs, ping pongs, etc. Extensive experiments on both low-resolution (FE240hz, VisEvent, COESOT), and our newly proposed high-resolution EventVOT dataset fully validated the effectiveness of our proposed method. The dataset, evaluation toolkit, and source code are available on \url{https://github.com/Event-AHU/EventVOT_Benchmark}
Abstract:Nighttime person Re-ID (person re-identification in the nighttime) is a very important and challenging task for visual surveillance but it has not been thoroughly investigated. Under the low illumination condition, the performance of person Re-ID methods usually sharply deteriorates. To address the low illumination challenge in nighttime person Re-ID, this paper proposes an Illumination Distillation Framework (IDF), which utilizes illumination enhancement and illumination distillation schemes to promote the learning of Re-ID models. Specifically, IDF consists of a master branch, an illumination enhancement branch, and an illumination distillation module. The master branch is used to extract the features from a nighttime image. The illumination enhancement branch first estimates an enhanced image from the nighttime image using a nonlinear curve mapping method and then extracts the enhanced features. However, nighttime and enhanced features usually contain data noise due to unstable lighting conditions and enhancement failures. To fully exploit the complementary benefits of nighttime and enhanced features while suppressing data noise, we propose an illumination distillation module. In particular, the illumination distillation module fuses the features from two branches through a bottleneck fusion model and then uses the fused features to guide the learning of both branches in a distillation manner. In addition, we build a real-world nighttime person Re-ID dataset, named Night600, which contains 600 identities captured from different viewpoints and nighttime illumination conditions under complex outdoor environments. Experimental results demonstrate that our IDF can achieve state-of-the-art performance on two nighttime person Re-ID datasets (i.e., Night600 and Knight ). We will release our code and dataset at https://github.com/Alexadlu/IDF.
Abstract:Event camera-based pattern recognition is a newly arising research topic in recent years. Current researchers usually transform the event streams into images, graphs, or voxels, and adopt deep neural networks for event-based classification. Although good performance can be achieved on simple event recognition datasets, however, their results may be still limited due to the following two issues. Firstly, they adopt spatial sparse event streams for recognition only, which may fail to capture the color and detailed texture information well. Secondly, they adopt either Spiking Neural Networks (SNN) for energy-efficient recognition with suboptimal results, or Artificial Neural Networks (ANN) for energy-intensive, high-performance recognition. However, seldom of them consider achieving a balance between these two aspects. In this paper, we formally propose to recognize patterns by fusing RGB frames and event streams simultaneously and propose a new RGB frame-event recognition framework to address the aforementioned issues. The proposed method contains four main modules, i.e., memory support Transformer network for RGB frame encoding, spiking neural network for raw event stream encoding, multi-modal bottleneck fusion module for RGB-Event feature aggregation, and prediction head. Due to the scarce of RGB-Event based classification dataset, we also propose a large-scale PokerEvent dataset which contains 114 classes, and 27102 frame-event pairs recorded using a DVS346 event camera. Extensive experiments on two RGB-Event based classification datasets fully validated the effectiveness of our proposed framework. We hope this work will boost the development of pattern recognition by fusing RGB frames and event streams. Both our dataset and source code of this work will be released at https://github.com/Event-AHU/SSTFormer.
Abstract:Learning based feature matching methods have been commonly studied in recent years. The core issue for learning feature matching is to how to learn (1) discriminative representations for feature points (or regions) within each intra-image and (2) consensus representations for feature points across inter-images. Recently, self- and cross-attention models have been exploited to address this issue. However, in many scenes, features are coming with large-scale, redundant and outliers contaminated. Previous self-/cross-attention models generally conduct message passing on all primal features which thus lead to redundant learning and high computational cost. To mitigate limitations, inspired by recent seed matching methods, in this paper, we propose a novel efficient Anchor Matching Transformer (AMatFormer) for the feature matching problem. AMatFormer has two main aspects: First, it mainly conducts self-/cross-attention on some anchor features and leverages these anchor features as message bottleneck to learn the representations for all primal features. Thus, it can be implemented efficiently and compactly. Second, AMatFormer adopts a shared FFN module to further embed the features of two images into the common domain and thus learn the consensus feature representations for the matching problem. Experiments on several benchmarks demonstrate the effectiveness and efficiency of the proposed AMatFormer matching approach.
Abstract:Existing vehicle re-identification methods mainly rely on the single query, which has limited information for vehicle representation and thus significantly hinders the performance of vehicle Re-ID in complicated surveillance networks. In this paper, we propose a more realistic and easily accessible task, called multi-query vehicle Re-ID, which leverages multiple queries to overcome viewpoint limitation of single one. Based on this task, we make three major contributions. First, we design a novel viewpoint-conditioned network (VCNet), which adaptively combines the complementary information from different vehicle viewpoints, for multi-query vehicle Re-ID. Moreover, to deal with the problem of missing vehicle viewpoints, we propose a cross-view feature recovery module which recovers the features of the missing viewpoints by learnt the correlation between the features of available and missing viewpoints. Second, we create a unified benchmark dataset, taken by 6142 cameras from a real-life transportation surveillance system, with comprehensive viewpoints and large number of crossed scenes of each vehicle for multi-query vehicle Re-ID evaluation. Finally, we design a new evaluation metric, called mean cross-scene precision (mCSP), which measures the ability of cross-scene recognition by suppressing the positive samples with similar viewpoints from same camera. Comprehensive experiments validate the superiority of the proposed method against other methods, as well as the effectiveness of the designed metric in the evaluation of multi-query vehicle Re-ID.