Shanghai Jiaotong University
Abstract:The integration of Large Language Models (LLMs) into robotics has revolutionized human-robot interactions and autonomous task planning. However, these systems are often unable to self-correct during the task execution, which hinders their adaptability in dynamic real-world environments. To address this issue, we present a Hierarchical Closed-loop Robotic Intelligent Self-correction Planner (HiCRISP), an innovative framework that enables robots to correct errors within individual steps during the task execution. HiCRISP actively monitors and adapts the task execution process, addressing both high-level planning and low-level action errors. Extensive benchmark experiments, encompassing virtual and real-world scenarios, showcase HiCRISP's exceptional performance, positioning it as a promising solution for robotic task planning with LLMs.
Abstract:Grasping occluded objects in cluttered environments is an essential component in complex robotic manipulation tasks. In this paper, we introduce an AffordanCE-driven Next-Best-View planning policy (ACE-NBV) that tries to find a feasible grasp for target object via continuously observing scenes from new viewpoints. This policy is motivated by the observation that the grasp affordances of an occluded object can be better-measured under the view when the view-direction are the same as the grasp view. Specifically, our method leverages the paradigm of novel view imagery to predict the grasps affordances under previously unobserved view, and select next observation view based on the gain of the highest imagined grasp quality of the target object. The experimental results in simulation and on the real robot demonstrate the effectiveness of the proposed affordance-driven next-best-view planning policy. Additional results, code, and videos of real robot experiments can be found in the supplementary materials.
Abstract:Trajectory and control secrecy is an important issue in robotics security. This paper proposes a novel algorithm for the control input inference of a mobile agent without knowing its control objective. Specifically, the algorithm first estimates the target state by applying external perturbations. Then we identify the objective function based on the inverse optimal control, providing the well-posedness proof and the identifiability analysis. Next, we obtain the optimal estimate of the control horizon using binary search. Finally, the agent's control optimization problem is reconstructed and solved to predict its input. Simulation illustrates the efficiency and the performance of the algorithm.
Abstract:We revisit the estimation bias in policy gradients for the discounted episodic Markov decision process (MDP) from Deep Reinforcement Learning (DRL) perspective. The objective is formulated theoretically as the expected returns discounted over the time horizon. One of the major policy gradient biases is the state distribution shift: the state distribution used to estimate the gradients differs from the theoretical formulation in that it does not take into account the discount factor. Existing discussion of the influence of this bias was limited to the tabular and softmax cases in the literature. Therefore, in this paper, we extend it to the DRL setting where the policy is parameterized and demonstrate how this bias can lead to suboptimal policies theoretically. We then discuss why the empirically inaccurate implementations with shifted state distribution can still be effective. We show that, despite such state distribution shift, the policy gradient estimation bias can be reduced in the following three ways: 1) a small learning rate; 2) an adaptive-learning-rate-based optimizer; and 3) KL regularization. Specifically, we show that a smaller learning rate, or, an adaptive learning rate, such as that used by Adam and RSMProp optimizers, makes the policy optimization robust to the bias. We further draw connections between optimizers and the optimization regularization to show that both the KL and the reverse KL regularization can significantly rectify this bias. Moreover, we provide extensive experiments on continuous control tasks to support our analysis. Our paper sheds light on how successful PG algorithms optimize policies in the DRL setting, and contributes insights into the practical issues in DRL.
Abstract:The performance of a camera network monitoring a set of targets depends crucially on the configuration of the cameras. In this paper, we investigate the reconfiguration strategy for the parameterized camera network model, with which the sensing qualities of the multiple targets can be optimized globally and simultaneously. We first propose to use the number of pixels occupied by a unit-length object in image as a metric of the sensing quality of the object, which is determined by the parameters of the camera, such as intrinsic, extrinsic, and distortional coefficients. Then, we form a single quantity that measures the sensing quality of the targets by the camera network. This quantity further serves as the objective function of our optimization problem to obtain the optimal camera configuration. We verify the effectiveness of our approach through extensive simulations and experiments, and the results reveal its improved performance on the AprilTag detection tasks. Codes and related utilities for this work are open-sourced and available at https://github.com/sszxc/MultiCam-Simulation.
Abstract:Designing safety-critical control for robotic manipulators is challenging, especially in a cluttered environment. First, the actual trajectory of a manipulator might deviate from the planned one due to the complex collision environments and non-trivial dynamics, leading to collision; Second, the feasible space for the manipulator is hard to obtain since the explicit distance functions between collision meshes are unknown. By analyzing the relationship between the safe set and the controlled invariant set, this paper proposes a data-driven control barrier function (CBF) construction method, which extracts CBF from distance samples. Specifically, the CBF guarantees the controlled invariant property for considering the system dynamics. The data-driven method samples the distance function and determines the safe set. Then, the CBF is synthesized based on the safe set by a scenario-based sum of square (SOS) program. Unlike most existing linearization based approaches, our method reserves the volume of the feasible space for planning without approximation, which helps find a solution in a cluttered environment. The control law is obtained by solving a CBF-based quadratic program in real time, which works as a safe filter for the desired planning-based controller. Moreover, our method guarantees safety with the proven probabilistic result. Our method is validated on a 7-DOF manipulator in both real and virtual cluttered environments. The experiments show that the manipulator is able to execute tasks where the clearance between obstacles is in millimeters.
Abstract:Most obstacle avoidance algorithms are only effective in specific environments, and they have low adaptability to some new environments. In this paper, we propose a trajectory learning (TL)-based obstacle avoidance algorithm, which can learn implicit obstacle avoidance mechanism from trajectories generated by general obstacle avoidance algorithms and achieves better adaptability. Specifically, we define a general data structure to describe the obstacle avoidance mechanism. Based on this structure, we transform the learning of the obstacle avoidance algorithm into a multiclass classification problem about the direction selection. Then, we design an artificial neural network (ANN) to fit multiclass classification function through supervised learning and finally obtain the obstacle avoidance mechanism that generates the observed trajectories. Our algorithm can obtain the obstacle avoidance mechanism similar to that demonstrated in the trajectories, and are adaptable to unseen environments. The automatic learning mechanism simplifies modification and debugging of obstacle avoidance algorithms in applications. Simulation results demonstrate that the proposed algorithm can learn obstacle avoidance strategy from trajectories and achieve better adaptability.
Abstract:The interception of moving targets is a widely studied issue. In this paper, we propose an algorithm of intercepting the moving target with a wheeled mobile robot in a dynamic environment. We first predict the future position of the target through polynomial fitting. The algorithm then generates an interception trajectory with path and speed decoupling. We use Hybrid A* search to plan a path and optimize it via gradient decent method. To avoid the dynamic obstacles in the environment, we introduce ST graph for speed planning. The speed curve is represented by piecewise B\'ezier curves for further optimization. Compared with other interception algorithms, we consider a dynamic environment and plan a safety trajectory which satisfies the kinematic characteristics of the wheeled robot while ensuring the accuracy of interception. Simulation illustrates that the algorithm successfully achieves the interception tasks and has high computational efficiency.
Abstract:Recent years have witnessed the fast advance of security research for networked dynamical system (NDS). Considering the latest inference attacks that enable stealthy and precise attacks into NDSs with observation-based learning, this article focuses on a new security aspect, i.e., how to protect control mechanism secrets from inference attacks, including state information, interaction structure and control laws. We call this security property as control mechanism secrecy, which provides protection of the vulnerabilities in the control process and fills the defense gap that traditional cyber security cannot handle. Since the knowledge of control mechanism defines the capabilities to implement attacks, ensuring control mechanism secrecy needs to go beyond the conventional data privacy to cover both transmissible data and intrinsic models in NDSs. The prime goal of this article is to summarize recent results of both inference attacks on control mechanism secrets and countermeasures. We first introduce the basic inference attack methods on the state and structure of NDSs, respectively, along with their inference performance bounds. Then, the corresponding countermeasures and performance metrics are given to illustrate how to preserve the control mechanism secrecy. Necessary conditions are derived to guide the secrecy design. Finally, thorough discussions on the control laws and open issues are presented, beckoning future investigation on reliable countermeasure design and tradeoffs between the secrecy and control performance.
Abstract:The interaction topology is critical for efficient cooperation of mobile robotic networks (MRNs). We focus on the local topology inference problem of MRNs under formation control, where an inference robot with limited observation range can manoeuvre among the formation robots. This problem faces new challenges brought by the highly coupled influence of unobservable formation robots, inaccessible formation inputs, and unknown interaction range. The novel idea here is to advocate a range-shrink strategy to perfectly avoid the influence of unobservable robots while filtering the input. To that end, we develop consecutive algorithms to determine a feasible constant robot subset from the changing robot set within the observation range, and estimate the formation input and the interaction range. Then, an ordinary least squares based local topology estimator is designed with the previously inferred information. Resorting to the concentration measure, we prove the convergence rate and accuracy of the proposed estimator, taking the estimation errors of previous steps into account. Extensions on nonidentical observation slots and more complicated scenarios are also analyzed. Comprehensive simulation tests and method comparisons corroborate the theoretical findings.