Abstract:Existing point cloud representation learning tend to learning the geometric distribution of objects through data-driven approaches, emphasizing structural features while overlooking the relationship between the local information and the whole structure. Local features reflect the fine-grained variations of an object, while the whole structure is determined by the interaction and combination of these local features, collectively defining the object's shape. In real-world, objects undergo elastic deformation under external forces, and this deformation gradually affects the whole structure through the propagation of forces from local regions, thereby altering the object's geometric properties. Inspired by this, we propose a physics-driven self-supervised learning method for point cloud representation, which captures the relationship between parts and the whole by constructing a local-whole force propagation mechanism. Specifically, we employ a dual-task encoder-decoder framework, integrating the geometric modeling capability of implicit fields with physics-driven elastic deformation. The encoder extracts features from the point cloud and its tetrahedral mesh representation, capturing both geometric and physical properties. These features are then fed into two decoders: one learns the whole geometric shape of the point cloud through an implicit field, while the other predicts local deformations using two specifically designed physics information loss functions, modeling the deformation relationship between local and whole shapes. Experimental results show that our method outperforms existing approaches in object classification, few-shot learning, and segmentation, demonstrating its effectiveness.
Abstract:In this work, we present a computing platform named digital twin brain (DTB) that can simulate spiking neuronal networks of the whole human brain scale and more importantly, a personalized biological brain structure. In comparison to most brain simulations with a homogeneous global structure, we highlight that the sparseness, couplingness and heterogeneity in the sMRI, DTI and PET data of the brain has an essential impact on the efficiency of brain simulation, which is proved from the scaling experiments that the DTB of human brain simulation is communication-intensive and memory-access intensive computing systems rather than computation-intensive. We utilize a number of optimization techniques to balance and integrate the computation loads and communication traffics from the heterogeneous biological structure to the general GPU-based HPC and achieve leading simulation performance for the whole human brain-scaled spiking neuronal networks. On the other hand, the biological structure, equipped with a mesoscopic data assimilation, enables the DTB to investigate brain cognitive function by a reverse-engineering method, which is demonstrated by a digital experiment of visual evaluation on the DTB. Furthermore, we believe that the developing DTB will be a promising powerful platform for a large of research orients including brain-inspiredintelligence, rain disease medicine and brain-machine interface.