Abstract:Implicit neural representations (INRs) have emerged as a compact and parametric alternative to discrete array-based data representations, encoding information directly in neural network weights to enable resolution-independent representation and memory efficiency. However, existing INR approaches, when constrained to compact network sizes, struggle to faithfully represent the multi-scale structures, high-frequency information, and fine textures that characterize the majority of scientific datasets. To address this limitation, we propose WIEN-INR, a wavelet-informed implicit neural representation that distributes modeling across different resolution scales and employs a specialized kernel network at the finest scale to recover subtle details. This multi-scale architecture allows for the use of smaller networks to retain the full spectrum of information while preserving the training efficiency and reducing storage cost. Through extensive experiments on diverse scientific datasets spanning different scales and structural complexities, WIEN-INR achieves superior reconstruction fidelity while maintaining a compact model size. These results demonstrate WIEN-INR as a practical neural representation framework for high-fidelity scientific data encoding, extending the applicability of INRs to domains where efficient preservation of fine detail is essential.
Abstract:The development of X-ray Free Electron Lasers (XFELs) has opened numerous opportunities to probe atomic structure and ultrafast dynamics of various materials. Single Particle Imaging (SPI) with XFELs enables the investigation of biological particles in their natural physiological states with unparalleled temporal resolution, while circumventing the need for cryogenic conditions or crystallization. However, reconstructing real-space structures from reciprocal-space x-ray diffraction data is highly challenging due to the absence of phase and orientation information, which is further complicated by weak scattering signals and considerable fluctuations in the number of photons per pulse. In this work, we present an end-to-end, self-supervised machine learning approach to recover particle orientations and estimate reciprocal space intensities from diffraction images only. Our method demonstrates great robustness under demanding experimental conditions with significantly enhanced reconstruction capabilities compared with conventional algorithms, and signifies a paradigm shift in SPI as currently practiced at XFELs.