Abstract:Implicit neural representations (INRs) have emerged as a compact and parametric alternative to discrete array-based data representations, encoding information directly in neural network weights to enable resolution-independent representation and memory efficiency. However, existing INR approaches, when constrained to compact network sizes, struggle to faithfully represent the multi-scale structures, high-frequency information, and fine textures that characterize the majority of scientific datasets. To address this limitation, we propose WIEN-INR, a wavelet-informed implicit neural representation that distributes modeling across different resolution scales and employs a specialized kernel network at the finest scale to recover subtle details. This multi-scale architecture allows for the use of smaller networks to retain the full spectrum of information while preserving the training efficiency and reducing storage cost. Through extensive experiments on diverse scientific datasets spanning different scales and structural complexities, WIEN-INR achieves superior reconstruction fidelity while maintaining a compact model size. These results demonstrate WIEN-INR as a practical neural representation framework for high-fidelity scientific data encoding, extending the applicability of INRs to domains where efficient preservation of fine detail is essential.
Abstract:The observation and description of collective excitations in solids is a fundamental issue when seeking to understand the physics of a many-body system. Analysis of these excitations is usually carried out by measuring the dynamical structure factor, S(Q, $\omega$), with inelastic neutron or x-ray scattering techniques and comparing this against a calculated dynamical model. Here, we develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data. We benchmark this approach on a Linear Spin Wave Theory (LSWT) simulator and advanced inelastic neutron scattering data from the square-lattice spin-1 antiferromagnet La$_2$NiO$_4$. We find that the model predicts the unknown parameters with excellent agreement relative to analytical fitting. In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data, without the need for human-guided peak finding and fitting algorithms. This prototypical approach promises a new technology for this field to automatically detect and refine more advanced models for ordered quantum systems.