Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Li Fan, Ruida Zhou, Chao Tian, Cong Shen

We study a federated linear bandits model, where $M$ clients communicate with a central server to solve a linear contextual bandits problem with finite adversarial action sets that may be different across clients. To address the unique challenges of adversarial finite action sets, we propose the FedSupLinUCB algorithm, which extends the principles of SupLinUCB and OFUL algorithms in linear contextual bandits. We prove that FedSupLinUCB achieves a total regret of $\tilde{O}(\sqrt{d T})$, where $T$ is the total number of arm pulls from all clients, and $d$ is the ambient dimension of the linear model. This matches the minimax lower bound and thus is order-optimal (up to polylog terms). We study both asynchronous and synchronous cases and show that the communication cost can be controlled as $O(d M^2 \log(d)\log(T))$ and $O(\sqrt{d^3 M^3} \log(d))$, respectively. The FedSupLinUCB design is further extended to two scenarios: (1) variance-adaptive, where a total regret of $\tilde{O} (\sqrt{d \sum \nolimits_{t=1}^{T} \sigma_t^2})$ can be achieved with $\sigma_t^2$ being the noise variance of round $t$; and (2) adversarial corruption, where a total regret of $\tilde{O}(\sqrt{dT} + d C_p)$ can be achieved with $C_p$ being the total corruption budget. Experiment results corroborate the theoretical analysis and demonstrate the effectiveness of FedSupLinUCB on both synthetic and real-world datasets.

Via

Chao Tian, Zikun Zhou, Yuqing Huang, Gaojun Li, Zhenyu He

RGB-Thermal (RGB-T) pedestrian detection aims to locate the pedestrians in RGB-T image pairs to exploit the complementation between the two modalities for improving detection robustness in extreme conditions. Most existing algorithms assume that the RGB-T image pairs are well registered, while in the real world they are not aligned ideally due to parallax or different field-of-view of the cameras. The pedestrians in misaligned image pairs may locate at different positions in two images, which results in two challenges: 1) how to achieve inter-modality complementation using spatially misaligned RGB-T pedestrian patches, and 2) how to recognize the unpaired pedestrians at the boundary. To deal with these issues, we propose a new paradigm for unregistered RGB-T pedestrian detection, which predicts two separate pedestrian locations in the RGB and thermal images, respectively. Specifically, we propose a cross-modality proposal-guided feature mining (CPFM) mechanism to extract the two precise fusion features for representing the pedestrian in the two modalities, even if the RGB-T image pair is unaligned. It enables us to effectively exploit the complementation between the two modalities. With the CPFM mechanism, we build a two-stream dense detector; it predicts the two pedestrian locations in the two modalities based on the corresponding fusion feature mined by the CPFM mechanism. Besides, we design a data augmentation method, named Homography, to simulate the discrepancy in scales and views between images. We also investigate two non-maximum suppression (NMS) methods for post-processing. Favorable experimental results demonstrate the effectiveness and robustness of our method in dealing with unregistered pedestrians with different shifts.

Via

Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, P. R. Kumar, Chao Tian

We study robust reinforcement learning (RL) with the goal of determining a well-performing policy that is robust against model mismatch between the training simulator and the testing environment. Previous policy-based robust RL algorithms mainly focus on the tabular setting under uncertainty sets that facilitate robust policy evaluation, but are no longer tractable when the number of states scales up. To this end, we propose two novel uncertainty set formulations, one based on double sampling and the other on an integral probability metric. Both make large-scale robust RL tractable even when one only has access to a simulator. We propose a robust natural actor-critic (RNAC) approach that incorporates the new uncertainty sets and employs function approximation. We provide finite-time convergence guarantees for the proposed RNAC algorithm to the optimal robust policy within the function approximation error. Finally, we demonstrate the robust performance of the policy learned by our proposed RNAC approach in multiple MuJoCo environments and a real-world TurtleBot navigation task.

Via

Ruida Zhou, Chao Tian, Tie Liu

We provide a new information-theoretic generalization error bound that is exactly tight (i.e., matching even the constant) for the canonical quadratic Gaussian mean estimation problem. Despite considerable existing efforts in deriving information-theoretic generalization error bounds, applying them to this simple setting where sample average is used as the estimate of the mean value of Gaussian data has not yielded satisfying results. In fact, most existing bounds are order-wise loose in this setting, which has raised concerns about the fundamental capability of information-theoretic bounds in reasoning the generalization behavior for machine learning. The proposed new bound adopts the individual-sample-based approach proposed by Bu et al., but also has several key new ingredients. Firstly, instead of applying the change of measure inequality on the loss function, we apply it to the generalization error function itself; secondly, the bound is derived in a conditional manner; lastly, a reference distribution, which bears a certain similarity to the prior distribution in the Bayesian setting, is introduced. The combination of these components produces a general KL-divergence-based generalization error bound. We further show that although the conditional bounding and the reference distribution can make the bound exactly tight, removing them does not significantly degrade the bound, which leads to a mutual-information-based bound that is also asymptotically tight in this setting.

Via

Ruida Zhou, Tao Liu, Dileep Kalathil, P. R. Kumar, Chao Tian

We study policy optimization for Markov decision processes (MDPs) with multiple reward value functions, which are to be jointly optimized according to given criteria such as proportional fairness (smooth concave scalarization), hard constraints (constrained MDP), and max-min trade-off. We propose an Anchor-changing Regularized Natural Policy Gradient (ARNPG) framework, which can systematically incorporate ideas from well-performing first-order methods into the design of policy optimization algorithms for multi-objective MDP problems. Theoretically, the designed algorithms based on the ARNPG framework achieve $\tilde{O}(1/T)$ global convergence with exact gradients. Empirically, the ARNPG-guided algorithms also demonstrate superior performance compared to some existing policy gradient-based approaches in both exact gradients and sample-based scenarios.

Via

Ruida Zhou, Chao Tian

We study the effect of reward variance heterogeneity in the approximate top-$m$ arm identification setting. In this setting, the reward for the $i$-th arm follows a $\sigma^2_i$-sub-Gaussian distribution, and the agent needs to incorporate this knowledge to minimize the expected number of arm pulls to identify $m$ arms with the largest means within error $\epsilon$ out of the $n$ arms, with probability at least $1-\delta$. We show that the worst-case sample complexity of this problem is $$\Theta\left( \sum_{i =1}^n \frac{\sigma_i^2}{\epsilon^2} \ln\frac{1}{\delta} + \sum_{i \in G^{m}} \frac{\sigma_i^2}{\epsilon^2} \ln(m) + \sum_{j \in G^{l}} \frac{\sigma_j^2}{\epsilon^2} \text{Ent}(\sigma^2_{G^{r}}) \right),$$ where $G^{m}, G^{l}, G^{r}$ are certain specific subsets of the overall arm set $\{1, 2, \ldots, n\}$, and $\text{Ent}(\cdot)$ is an entropy-like function which measures the heterogeneity of the variance proxies. The upper bound of the complexity is obtained using a divide-and-conquer style algorithm, while the matching lower bound relies on the study of a dual formulation.

Via

Wenjing Chen, Ruida Zhou, Chao Tian, Cong Shen

We analyze the performance of the Borda counting algorithm in a non-parametric model. The algorithm needs to utilize probabilistic rankings of the items within $m$-sized subsets to accurately determine which items are the overall top-$k$ items in a total of $n$ items. The Borda counting algorithm simply counts the cumulative scores for each item from these partial ranking observations. This generalizes a previous work of a similar nature by Shah et al. using probabilistic pairwise comparison data. The performance of the Borda counting algorithm critically depends on the associated score separation $\Delta_k$ between the $k$-th item and the $(k+1)$-th item. Specifically, we show that if $\Delta_k$ is greater than certain value, then the top-$k$ items selected by the algorithm is asymptotically accurate almost surely; if $\Delta_k$ is below certain value, then the result will be inaccurate with a constant probability. In the special case of $m=2$, i.e., pairwise comparison, the resultant bound is tighter than that given by Shah et al., leading to a reduced gap between the error probability upper and lower bounds. These results are further extended to the approximate top-$k$ selection setting. Numerical experiments demonstrate the effectiveness and accuracy of the Borda counting algorithm, compared with the spectral MLE-based algorithm, particularly when the data does not necessarily follow an assumed parametric model.

Via

Tao Liu, Ruida Zhou, Dileep Kalathil, P. R. Kumar, Chao Tian

We address the issue of safety in reinforcement learning. We pose the problem in a discounted infinite-horizon constrained Markov decision process framework. Existing results have shown that gradient-based methods are able to achieve an $\mathcal{O}(1/\sqrt{T})$ global convergence rate both for the optimality gap and the constraint violation. We exhibit a natural policy gradient-based algorithm that has a faster convergence rate $\mathcal{O}(\log(T)/T)$ for both the optimality gap and the constraint violation. When Slater's condition is satisfied and known a priori, zero constraint violation can be further guaranteed for a sufficiently large $T$ while maintaining the same convergence rate.

Via

Kai Zhang, Chao Tian, Kun Zhang, Todd Johnson, Xiaoqian Jiang

The PC algorithm is the state-of-the-art algorithm for causal structure discovery on observational data. It can be computationally expensive in the worst case due to the conditional independence tests are performed in an exhaustive-searching manner. This makes the algorithm computationally intractable when the task contains several hundred or thousand nodes, particularly when the true underlying causal graph is dense. We propose a critical observation that the conditional set rendering two nodes independent is non-unique, and including certain redundant nodes do not sacrifice result accuracy. Based on this finding, the innovations of our work are two-folds. First, we innovate on a reserve order linkage pruning PC algorithm which significantly increases the algorithm's efficiency. Second, we propose a parallel computing strategy for statistical independence tests by leveraging tensor computation, which brings further speedup. We also prove the proposed algorithm does not induce statistical power loss under mild graph and data dimensionality assumptions. Experimental results show that the single-threaded version of the proposed algorithm can achieve a 6-fold speedup compared to the PC algorithm on a dense 95-node graph, and the parallel version can make a 825-fold speed-up. We also provide proof that the proposed algorithm is consistent under the same set of conditions with conventional PC algorithm.

Via

Sennur Ulukus, Salman Avestimehr, Michael Gastpar, Syed Jafar, Ravi Tandon, Chao Tian

Most of our lives are conducted in the cyberspace. The human notion of privacy translates into a cyber notion of privacy on many functions that take place in the cyberspace. This article focuses on three such functions: how to privately retrieve information from cyberspace (privacy in information retrieval), how to privately leverage large-scale distributed/parallel processing (privacy in distributed computing), and how to learn/train machine learning models from private data spread across multiple users (privacy in distributed (federated) learning). The article motivates each privacy setting, describes the problem formulation, summarizes breakthrough results in the history of each problem, and gives recent results and discusses some of the major ideas that emerged in each field. In addition, the cross-cutting techniques and interconnections between the three topics are discussed along with a set of open problems and challenges.

Via