Abstract:Recent advancements in Multimodal Large Language Models (MLLMs) have enabled them to effectively integrate vision and language, addressing a variety of downstream tasks. However, despite their significant success, these models still exhibit hallucination phenomena, where the outputs appear plausible but do not align with the content of the images. To mitigate this issue, we introduce Local Perception Search (LPS), a decoding method during inference that is both simple and training-free, yet effectively suppresses hallucinations. This method leverages local visual prior information as a value function to correct the decoding process. Additionally, we observe that the impact of the local visual prior on model performance is more pronounced in scenarios with high levels of image noise. Notably, LPS is a plug-and-play approach that is compatible with various models. Extensive experiments on widely used hallucination benchmarks and noisy data demonstrate that LPS significantly reduces the incidence of hallucinations compared to the baseline, showing exceptional performance, particularly in noisy settings.
Abstract:While multi-modal large language models (MLLMs) have made significant progress in complex reasoning tasks via reinforcement learning, it is commonly believed that extensive training data is necessary for improving multi-modal reasoning ability, inevitably leading to data redundancy and substantial computational costs. However, can smaller high-value datasets match or outperform full corpora for multi-modal reasoning in MLLMs? In this work, we challenge this assumption through a key observation: meaningful multi-modal reasoning is triggered by only a sparse subset of training samples, termed cognitive samples, whereas the majority contribute marginally. Building on this insight, we propose a novel data selection paradigm termed Reasoning Activation Potential (RAP), which identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning by two complementary estimators: 1) Causal Discrepancy Estimator (CDE) based on the potential outcome model principle, eliminates samples that overly rely on language priors by comparing outputs between multi-modal and text-only inputs; 2) Attention Confidence Estimator (ACE), which exploits token-level self-attention to discard samples dominated by irrelevant but over-emphasized tokens in intermediate reasoning stages. Moreover, we introduce a Difficulty-aware Replacement Module (DRM) to substitute trivial instances with cognitively challenging ones, thereby ensuring complexity for robust multi-modal reasoning. Experiments on six datasets show that our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%. Our code is available at https://github.com/Leo-ssl/RAP.
Abstract:Conversational Recommender Systems (CRSs) aim to provide personalized recommendations by interacting with users through conversations. Most existing studies of CRS focus on extracting user preferences from conversational contexts. However, due to the short and sparse nature of conversational contexts, it is difficult to fully capture user preferences by conversational contexts only. We argue that multi-modal semantic information can enrich user preference expressions from diverse dimensions (e.g., a user preference for a certain movie may stem from its magnificent visual effects and compelling storyline). In this paper, we propose a multi-modal semantic graph prompt learning framework for CRS, named MSCRS. First, we extract textual and image features of items mentioned in the conversational contexts. Second, we capture higher-order semantic associations within different semantic modalities (collaborative, textual, and image) by constructing modality-specific graph structures. Finally, we propose an innovative integration of multi-modal semantic graphs with prompt learning, harnessing the power of large language models to comprehensively explore high-dimensional semantic relationships. Experimental results demonstrate that our proposed method significantly improves accuracy in item recommendation, as well as generates more natural and contextually relevant content in response generation. We have released the code and the expanded multi-modal CRS datasets to facilitate further exploration in related research\footnote{https://github.com/BIAOBIAO12138/MSCRS-main}.
Abstract:Can we accurately identify the true correspondences from multimodal datasets containing mismatched data pairs? Existing methods primarily emphasize the similarity matching between the representations of objects across modalities, potentially neglecting the crucial relation consistency within modalities that are particularly important for distinguishing the true and false correspondences. Such an omission often runs the risk of misidentifying negatives as positives, thus leading to unanticipated performance degradation. To address this problem, we propose a general Relation Consistency learning framework, namely ReCon, to accurately discriminate the true correspondences among the multimodal data and thus effectively mitigate the adverse impact caused by mismatches. Specifically, ReCon leverages a novel relation consistency learning to ensure the dual-alignment, respectively of, the cross-modal relation consistency between different modalities and the intra-modal relation consistency within modalities. Thanks to such dual constrains on relations, ReCon significantly enhances its effectiveness for true correspondence discrimination and therefore reliably filters out the mismatched pairs to mitigate the risks of wrong supervisions. Extensive experiments on three widely-used benchmark datasets, including Flickr30K, MS-COCO, and Conceptual Captions, are conducted to demonstrate the effectiveness and superiority of ReCon compared with other SOTAs. The code is available at: https://github.com/qxzha/ReCon.
Abstract:In the field of deep learning, Graph Neural Networks (GNNs) and Graph Transformer models, with their outstanding performance and flexible architectural designs, have become leading technologies for processing structured data, especially graph data. Traditional GNNs often face challenges in capturing information from distant vertices effectively. In contrast, Graph Transformer models are particularly adept at managing long-distance node relationships. Despite these advantages, Graph Transformer models still encounter issues with computational and storage efficiency when scaled to large graph datasets. To address these challenges, we propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component, effectively enhancing the model's ability to aggregate relevant information from both local and extended neighborhoods at each layer. This method not only improves computational efficiency but also enriches the node features, facilitating a deeper analysis of complex graph structures. Additionally, to assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field. Accordingly, we constructed a dedicated citation network, ArXivNet. In this dataset, we specifically annotated the sentiment polarity of the citations (positive, neutral, negative) to enable in-depth sentiment analysis. Our approach has shown superior performance across a variety of tasks including vertex classification, link prediction, sentiment prediction, graph regression, and visualization. It outperforms existing methods in terms of effectiveness, as demonstrated by experimental results on multiple datasets.
Abstract:Precise segmentation of Unmanned Aerial Vehicle (UAV)-captured images plays a vital role in tasks such as crop yield estimation and plant health assessment in banana plantations. By identifying and classifying planted areas, crop area can be calculated, which is indispensable for accurate yield predictions. However, segmenting banana plantation scenes requires a substantial amount of annotated data, and manual labeling of these images is both time-consuming and labor-intensive, limiting the development of large-scale datasets. Furthermore, challenges such as changing target sizes, complex ground backgrounds, limited computational resources, and correct identification of crop categories make segmentation even more difficult. To address these issues, we proposed a comprehensive solution. Firstly, we designed an iterative optimization annotation pipeline leveraging SAM2's zero-shot capabilities to generate high-quality segmentation annotations, thereby reducing the cost and time associated with data annotation significantly. Secondly, we developed ALSS-YOLO-Seg, an efficient lightweight segmentation model optimized for UAV imagery. The model's backbone includes an Adaptive Lightweight Channel Splitting and Shuffling (ALSS) module to improve information exchange between channels and optimize feature extraction, aiding accurate crop identification. Additionally, a Multi-Scale Channel Attention (MSCA) module combines multi-scale feature extraction with channel attention to tackle challenges of varying target sizes and complex ground backgrounds.
Abstract:Normalizing flows, a category of probabilistic models famed for their capabilities in modeling complex data distributions, have exhibited remarkable efficacy in unsupervised anomaly detection. This paper explores the potential of normalizing flows in multi-class anomaly detection, wherein the normal data is compounded with multiple classes without providing class labels. Through the integration of vector quantization (VQ), we empower the flow models to distinguish different concepts of multi-class normal data in an unsupervised manner, resulting in a novel flow-based unified method, named VQ-Flow. Specifically, our VQ-Flow leverages hierarchical vector quantization to estimate two relative codebooks: a Conceptual Prototype Codebook (CPC) for concept distinction and its concomitant Concept-Specific Pattern Codebook (CSPC) to capture concept-specific normal patterns. The flow models in VQ-Flow are conditioned on the concept-specific patterns captured in CSPC, capable of modeling specific normal patterns associated with different concepts. Moreover, CPC further enables our VQ-Flow for concept-aware distribution modeling, faithfully mimicking the intricate multi-class normal distribution through a mixed Gaussian distribution reparametrized on the conceptual prototypes. Through the introduction of vector quantization, the proposed VQ-Flow advances the state-of-the-art in multi-class anomaly detection within a unified training scheme, yielding the Det./Loc. AUROC of 99.5%/98.3% on MVTec AD. The codebase is publicly available at https://github.com/cool-xuan/vqflow.
Abstract:Currently, in the field of video-text retrieval, there are many transformer-based methods. Most of them usually stack frame features and regrade frames as tokens, then use transformers for video temporal modeling. However, they commonly neglect the inferior ability of the transformer modeling local temporal information. To tackle this problem, we propose a transformer variant named Multi-Scale Temporal Difference Transformer (MSTDT). MSTDT mainly addresses the defects of the traditional transformer which has limited ability to capture local temporal information. Besides, in order to better model the detailed dynamic information, we make use of the difference feature between frames, which practically reflects the dynamic movement of a video. We extract the inter-frame difference feature and integrate the difference and frame feature by the multi-scale temporal transformer. In general, our proposed MSTDT consists of a short-term multi-scale temporal difference transformer and a long-term temporal transformer. The former focuses on modeling local temporal information, the latter aims at modeling global temporal information. At last, we propose a new loss to narrow the distance of similar samples. Extensive experiments show that backbone, such as CLIP, with MSTDT has attained a new state-of-the-art result.
Abstract:In weakly supervised video anomaly detection (WVAD), where only video-level labels indicating the presence or absence of abnormal events are available, the primary challenge arises from the inherent ambiguity in temporal annotations of abnormal occurrences. Inspired by the statistical insight that temporal features of abnormal events often exhibit outlier characteristics, we propose a novel method, BN-WVAD, which incorporates BatchNorm into WVAD. In the proposed BN-WVAD, we leverage the Divergence of Feature from Mean vector (DFM) of BatchNorm as a reliable abnormality criterion to discern potential abnormal snippets in abnormal videos. The proposed DFM criterion is also discriminative for anomaly recognition and more resilient to label noise, serving as the additional anomaly score to amend the prediction of the anomaly classifier that is susceptible to noisy labels. Moreover, a batch-level selection strategy is devised to filter more abnormal snippets in videos where more abnormal events occur. The proposed BN-WVAD model demonstrates state-of-the-art performance on UCF-Crime with an AUC of 87.24%, and XD-Violence, where AP reaches up to 84.93%. Our code implementation is accessible at https://github.com/cool-xuan/BN-WVAD.
Abstract:High-resolution representation is necessary for human pose estimation to achieve high performance, and the ensuing problem is high computational complexity. In particular, predominant pose estimation methods estimate human joints by 2D single-peak heatmaps. Each 2D heatmap can be horizontally and vertically projected to and reconstructed by a pair of 1D heat vectors. Inspired by this observation, we introduce a lightweight and powerful alternative, Spatially Unidimensional Self-Attention (SUSA), to the pointwise (1x1) convolution that is the main computational bottleneck in the depthwise separable 3c3 convolution. Our SUSA reduces the computational complexity of the pointwise (1x1) convolution by 96% without sacrificing accuracy. Furthermore, we use the SUSA as the main module to build our lightweight pose estimation backbone X-HRNet, where `X' represents the estimated cross-shape attention vectors. Extensive experiments on the COCO benchmark demonstrate the superiority of our X-HRNet, and comprehensive ablation studies show the effectiveness of the SUSA modules. The code is publicly available at https://github.com/cool-xuan/x-hrnet.