Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Discovery of Options via Meta-Learned Subgoals

Feb 12, 2021
Vivek Veeriah, Tom Zahavy, Matteo Hessel, Zhongwen Xu, Junhyuk Oh, Iurii Kemaev, Hado van Hasselt, David Silver, Satinder Singh


  Access Paper or Ask Questions

Balancing Constraints and Rewards with Meta-Gradient D4PG

Oct 13, 2020
Dan A. Calian, Daniel J. Mankowitz, Tom Zahavy, Zhongwen Xu, Junhyuk Oh, Nir Levine, Timothy Mann


  Access Paper or Ask Questions

Discovering Reinforcement Learning Algorithms

Jul 17, 2020
Junhyuk Oh, Matteo Hessel, Wojciech M. Czarnecki, Zhongwen Xu, Hado van Hasselt, Satinder Singh, David Silver


  Access Paper or Ask Questions

Meta-Gradient Reinforcement Learning with an Objective Discovered Online

Jul 16, 2020
Zhongwen Xu, Hado van Hasselt, Matteo Hessel, Junhyuk Oh, Satinder Singh, David Silver


  Access Paper or Ask Questions

Self-Tuning Deep Reinforcement Learning

Mar 02, 2020
Tom Zahavy, Zhongwen Xu, Vivek Veeriah, Matteo Hessel, Junhyuk Oh, Hado van Hasselt, David Silver, Satinder Singh


  Access Paper or Ask Questions

What Can Learned Intrinsic Rewards Capture?

Dec 11, 2019
Zeyu Zheng, Junhyuk Oh, Matteo Hessel, Zhongwen Xu, Manuel Kroiss, Hado van Hasselt, David Silver, Satinder Singh


  Access Paper or Ask Questions

Discovery of Useful Questions as Auxiliary Tasks

Sep 10, 2019
Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Richard Lewis, Janarthanan Rajendran, Junhyuk Oh, Hado van Hasselt, David Silver, Satinder Singh


  Access Paper or Ask Questions

Generative Adversarial Self-Imitation Learning

Dec 03, 2018
Yijie Guo, Junhyuk Oh, Satinder Singh, Honglak Lee


  Access Paper or Ask Questions

Contingency-Aware Exploration in Reinforcement Learning

Nov 05, 2018
Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi, Honglak Lee

* Preprint, work in progress. Under review at ICLR 2019 

  Access Paper or Ask Questions

Hierarchical Reinforcement Learning for Zero-shot Generalization with Subtask Dependencies

Nov 02, 2018
Sungryull Sohn, Junhyuk Oh, Honglak Lee

* In NIPS 2018 

  Access Paper or Ask Questions

Unicorn: Continual Learning with a Universal, Off-policy Agent

Jul 03, 2018
Daniel J. Mankowitz, Augustin Žídek, André Barreto, Dan Horgan, Matteo Hessel, John Quan, Junhyuk Oh, Hado van Hasselt, David Silver, Tom Schaul


  Access Paper or Ask Questions

Many-Goals Reinforcement Learning

Jun 22, 2018
Vivek Veeriah, Junhyuk Oh, Satinder Singh


  Access Paper or Ask Questions

On Learning Intrinsic Rewards for Policy Gradient Methods

Jun 22, 2018
Zeyu Zheng, Junhyuk Oh, Satinder Singh


  Access Paper or Ask Questions

Self-Imitation Learning

Jun 14, 2018
Junhyuk Oh, Yijie Guo, Satinder Singh, Honglak Lee


  Access Paper or Ask Questions

Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning

Nov 07, 2017
Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet Kohli

* ICML 2017 

  Access Paper or Ask Questions

Value Prediction Network

Nov 06, 2017
Junhyuk Oh, Satinder Singh, Honglak Lee

* NIPS 2017 

  Access Paper or Ask Questions

Control of Memory, Active Perception, and Action in Minecraft

May 30, 2016
Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, Honglak Lee

* ICML 2016 

  Access Paper or Ask Questions

Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

Dec 24, 2015
Seunghoon Hong, Junhyuk Oh, Bohyung Han, Honglak Lee


  Access Paper or Ask Questions

Action-Conditional Video Prediction using Deep Networks in Atari Games

Dec 22, 2015
Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard Lewis, Satinder Singh

* Published at NIPS 2015 (Advances in Neural Information Processing Systems 28) 

  Access Paper or Ask Questions